The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late...The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.展开更多
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ...Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.展开更多
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens...Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.展开更多
针对L-DACS1(L-band Digital Aeronautical Communication System Type 1)与DME(Distance Measuring Equipment)信号在时域、频域和低阶统计域干扰抑制不理想的问题,本文将L-DACS1与DME时频域交叠的干扰场景建模为确定性信号叠加高斯有...针对L-DACS1(L-band Digital Aeronautical Communication System Type 1)与DME(Distance Measuring Equipment)信号在时域、频域和低阶统计域干扰抑制不理想的问题,本文将L-DACS1与DME时频域交叠的干扰场景建模为确定性信号叠加高斯有色噪声的干扰量化模型,根据两者在高阶统计域的差异特性,提出基于三阶累积量的自适应滤波算法,并引入对数螺线函数改进变步长机制,实现自适应DME干扰消除.仿真结果表明:所提算法具有更高的干扰抑制比和更低的误比特率,但复杂度较高.相关结论可为L-DACS1系统的实际部署提供参考.展开更多
由于L频段数字航空通信系统1(L-band digital aeronautical communication system1,L-DACS1)和民航测距机(distance measuring equipment,DME)系统的频谱有部分重叠,因此在L-DACS1接收机中需要考虑DME干扰的抑制问题。提出了基于最大输...由于L频段数字航空通信系统1(L-band digital aeronautical communication system1,L-DACS1)和民航测距机(distance measuring equipment,DME)系统的频谱有部分重叠,因此在L-DACS1接收机中需要考虑DME干扰的抑制问题。提出了基于最大输出信噪比的干扰抑制和盲波束形成算法。由于DME脉冲干扰的功率较大,首先采用子空间跟踪算法来得到干扰子空间,然后将接收数据向干扰子空间的正交补空间进行投影以抑制DME干扰。干扰抑制后,接收数据中只剩下正交频分复用(orthogonal frequency division multiplexing,OFDM)信号和噪声了。为了充分利用阵列天线的优势,采用了输出信噪比最大准则来进行波束形成,将天线方向图的主瓣对准OFDM信号来向,以提高接收机输出信号的信噪比。仿真表明,该方法不需要先验信息就能够在抑制干扰的同时进行盲波束形成,在OFDM信号来向上获得高增益的主瓣,进而提高输出信噪比;另外,所提的波束形成方法在输入信噪比较低的环境下依然能够形成稳定的波束,将主瓣对准信号来向。展开更多
为了解决L频段数字航空通信系统1(L-band digital aeronautical communication system,L-DACS1)正交频分复用(orthogonal frequency division multiplex,OFDM)接收机遭受测距仪(distance measuring equipment,DME)信号干扰的问题,提出...为了解决L频段数字航空通信系统1(L-band digital aeronautical communication system,L-DACS1)正交频分复用(orthogonal frequency division multiplex,OFDM)接收机遭受测距仪(distance measuring equipment,DME)信号干扰的问题,提出了正交投影干扰抑制与循环自适应波束形成的空域滤波方法。首先,利用正交投影算法抑制DME信号干扰;然后,利用OFDM信号的循环平稳特性,构建循环自相关矩阵,通过奇异值分解得到波束形成的最优权矢量;最后,利用最优权矢量进行空域滤波。仿真研究表明,该方法可以在OFDM期望信号上形成稳定的主波束,同时能够抑制DME信号干扰。且所提方法具有复杂度较低、低信噪比情况下波束形成算法鲁棒的优势。展开更多
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ...Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.展开更多
针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块...针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块稀疏贝叶斯学习边界优化(block sparsEbayesian learning-thEbound optimization,BSBL-BO)算法的DME脉冲干扰抑制方法。首先,利用OFDM接收机空子载波不传输有用信号的特点构造针对DME脉冲干扰信号的压缩感知模型;然后基于BSBL-BO算法重构DME脉冲干扰信号;最后在时域进行干扰消除。仿真结果表明,该方法比已有的脉冲干扰抑制方法具有更高的重构精度和更快的运算速度,进一步降低了OFDM接收机的误比特率,提高了L-DACS1系统前向链路传输性能。展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.展开更多
The maximum of k numerical functions defined on , , by , ??is used here in Statistical classification. Previously, it has been used in Statistical Discrimination [1] and in Clustering [2]. We present first some theore...The maximum of k numerical functions defined on , , by , ??is used here in Statistical classification. Previously, it has been used in Statistical Discrimination [1] and in Clustering [2]. We present first some theoretical results on this function, and then its application in classification using a computer program we have developed. This approach leads to clear decisions, even in cases where the extension to several classes of Fisher’s linear discriminant function fails to be effective.展开更多
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da...In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.展开更多
基金This work is sponsored by National Natural Science Foundation of China (No. 40874056), Important National Science & Technology Specific Projects 2008ZX05023-005-004, and the NCET Fund.Acknowledgements The authors are grateful to Liu Yang, and Zhu Sheng-wang for their constructive remarks on this manuscript.
文摘The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
基金Supported by Doctoral Special Fund of State Education Commissionthe National Natural Science Foundation of China,Grant No.59477001 and No.59707002
文摘Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.
文摘Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
文摘针对L-DACS1(L-band Digital Aeronautical Communication System Type 1)与DME(Distance Measuring Equipment)信号在时域、频域和低阶统计域干扰抑制不理想的问题,本文将L-DACS1与DME时频域交叠的干扰场景建模为确定性信号叠加高斯有色噪声的干扰量化模型,根据两者在高阶统计域的差异特性,提出基于三阶累积量的自适应滤波算法,并引入对数螺线函数改进变步长机制,实现自适应DME干扰消除.仿真结果表明:所提算法具有更高的干扰抑制比和更低的误比特率,但复杂度较高.相关结论可为L-DACS1系统的实际部署提供参考.
文摘由于L频段数字航空通信系统1(L-band digital aeronautical communication system1,L-DACS1)和民航测距机(distance measuring equipment,DME)系统的频谱有部分重叠,因此在L-DACS1接收机中需要考虑DME干扰的抑制问题。提出了基于最大输出信噪比的干扰抑制和盲波束形成算法。由于DME脉冲干扰的功率较大,首先采用子空间跟踪算法来得到干扰子空间,然后将接收数据向干扰子空间的正交补空间进行投影以抑制DME干扰。干扰抑制后,接收数据中只剩下正交频分复用(orthogonal frequency division multiplexing,OFDM)信号和噪声了。为了充分利用阵列天线的优势,采用了输出信噪比最大准则来进行波束形成,将天线方向图的主瓣对准OFDM信号来向,以提高接收机输出信号的信噪比。仿真表明,该方法不需要先验信息就能够在抑制干扰的同时进行盲波束形成,在OFDM信号来向上获得高增益的主瓣,进而提高输出信噪比;另外,所提的波束形成方法在输入信噪比较低的环境下依然能够形成稳定的波束,将主瓣对准信号来向。
文摘为了解决L频段数字航空通信系统1(L-band digital aeronautical communication system,L-DACS1)正交频分复用(orthogonal frequency division multiplex,OFDM)接收机遭受测距仪(distance measuring equipment,DME)信号干扰的问题,提出了正交投影干扰抑制与循环自适应波束形成的空域滤波方法。首先,利用正交投影算法抑制DME信号干扰;然后,利用OFDM信号的循环平稳特性,构建循环自相关矩阵,通过奇异值分解得到波束形成的最优权矢量;最后,利用最优权矢量进行空域滤波。仿真研究表明,该方法可以在OFDM期望信号上形成稳定的主波束,同时能够抑制DME信号干扰。且所提方法具有复杂度较低、低信噪比情况下波束形成算法鲁棒的优势。
基金National Natural Science Foundation of China(No.10671074 and No.60673048)Natural Science Foundation of Education Ministry of Anhui Province(No.KJ2007B124 and No.2006KJ256B)
基金support provided by the China National Key Research and Development Program of China under Grant 2019YFB2004300the National Natural Science Foundation of China under Grant 51975065 and 51805051.
文摘Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.
文摘针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块稀疏贝叶斯学习边界优化(block sparsEbayesian learning-thEbound optimization,BSBL-BO)算法的DME脉冲干扰抑制方法。首先,利用OFDM接收机空子载波不传输有用信号的特点构造针对DME脉冲干扰信号的压缩感知模型;然后基于BSBL-BO算法重构DME脉冲干扰信号;最后在时域进行干扰消除。仿真结果表明,该方法比已有的脉冲干扰抑制方法具有更高的重构精度和更快的运算速度,进一步降低了OFDM接收机的误比特率,提高了L-DACS1系统前向链路传输性能。
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金This work is supported by the National Natural Science Foundation of China(No.61702226)the 111 Project(B12018)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20170200)the Fundamental Research Funds for the Central Universities(No.JUSRP11854).
文摘The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.
文摘The maximum of k numerical functions defined on , , by , ??is used here in Statistical classification. Previously, it has been used in Statistical Discrimination [1] and in Clustering [2]. We present first some theoretical results on this function, and then its application in classification using a computer program we have developed. This approach leads to clear decisions, even in cases where the extension to several classes of Fisher’s linear discriminant function fails to be effective.
文摘In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.