期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
1
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部