FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and sca...FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and scanning probe microscope were applied to study the magnetic properties, microstructures, morphologies and domain structures of the samples. (FePt)27Ti73 bilayer films were fabricated at various conditions to investigate the effect of Ti on FePt grains. The results show that without Ti matrix layer, FePt films deposited onto the glass substrates are fcc disordered; with addition of Ti matrix layer, FePt/Ti films form a ternary (FePt)27Ti73 alloy possessing fcc and L10 (111) mixed texture. FePt/(FePt)27Ti73 films with perfectly ordered L10(111) structure and unique magnetic properties can be obtained at Ti thickness of 35nm and substrate temperature of 250℃. The maximum coercivity is more than 240kA/m and the squareness ratio is more than 0.9. The obtained results suggest that the granular FePt/(FePt)27Ti73 films can be applicable to ultrahigh-density magnetic recording media.展开更多
A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions ...A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.展开更多
In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(...In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.展开更多
L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is f...L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.展开更多
Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction react...Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction reaction(ORR),in which a Zn-rich metal–organic framework(MOF)is used as an in situ generated support to confine the growth of PtZn particles.Despite requiring high-temperature treatment,the intermetallic L1_(0)-PtZn particles exhibit a small mean size of3.95 nm,which confers the catalysts with high electrochemical active surface area(81.9 m^(2)g_(Pt)^(-1))and atomic utilization.The Pt electron structure and binding strength between Pt and oxygen intermediates are optimized through ligand effect and compressive strain.These advantages result in ORR mass activity and specific activity of 0.926 A mg_(Pt)^(-1) and 1.13 mA cm^(-2),respectively,which are 5.4 and 4.0 times those of commercial Pt/C.The stable L10structure provides the catalysts with superb durability;only a halfwave potential loss of 11 mV is observed after 30,000 cycles of accelerated stress tests,through which the structure evolves into a more stable PtZn-Pt core-shell structure.Therefore,the development of a Zn-based MOF as a catalyst support is demonstrated,providing a synergy strategy to prepare highly dispersed intermetallic alloys with high activity and durability.展开更多
Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assis...Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.展开更多
The ordered Pt-based intermetallic nanoparticles(NPs)with small size show superior magnetic or catalytic properties,but the synthesis of these NPs still remains a great challenge due to the requirement of high tempera...The ordered Pt-based intermetallic nanoparticles(NPs)with small size show superior magnetic or catalytic properties,but the synthesis of these NPs still remains a great challenge due to the requirement of high temperature annealing for the formation of the ordered phase,which usually leads to sintering of the NPs.Here,we report a simple approach to directly synthesize monodisperse ordered L1_(0)-FePt NPs with average size 10.7 nm without further annealing or doping the third metal atoms,in which hexadecyltrimethylammonium chloride(CTAC)was found to be the key inducing agent for the thermodynamic growth of the Fe and Pt atoms into the ordered intermetallic structure in the synthetic process.In particular,10.7 nm L1_(0)-FePt NPs synthesized by the proper amount of CTAC show a coercivity of 3.15 kOe and saturation magnetization of 45 emu/g at room temperature.The current CTAC-assisted synthetic strategy makes it possible to deeply understand the formation of the ordered Pt-based intermetallic NP in solution phase synthesis.展开更多
基金Project(10274018) supported by the National Natural Science Foundation of China project(Z200102) supported the KeyFoundation of Hebei Normal University project(2002116) supported the Foundation Education Department of of Hebei Provin
文摘FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and scanning probe microscope were applied to study the magnetic properties, microstructures, morphologies and domain structures of the samples. (FePt)27Ti73 bilayer films were fabricated at various conditions to investigate the effect of Ti on FePt grains. The results show that without Ti matrix layer, FePt films deposited onto the glass substrates are fcc disordered; with addition of Ti matrix layer, FePt/Ti films form a ternary (FePt)27Ti73 alloy possessing fcc and L10 (111) mixed texture. FePt/(FePt)27Ti73 films with perfectly ordered L10(111) structure and unique magnetic properties can be obtained at Ti thickness of 35nm and substrate temperature of 250℃. The maximum coercivity is more than 240kA/m and the squareness ratio is more than 0.9. The obtained results suggest that the granular FePt/(FePt)27Ti73 films can be applicable to ultrahigh-density magnetic recording media.
文摘A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.
基金supported by National Key Research and Development Program of China (2020AAA0109005)the National Natural Science Foundation of China (61674062, 51501168, 41574175, and 41204083)+3 种基金the Fundamental Research Funds for the Central Universities of the China University of Geosciences (Wuhan) (CUG150632 and CUGL160414)the Fundamental Research Funds for National Universities of the China University of Geosciences (Wuhan)the Interdisciplinary program of Wuhan National High Magnetic Field Center (WHMFC202119)Huazhong University of Science and Technology, and Fund from Shenzhen Virtual University Park (2021Szvup091)
文摘In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.
基金supported by the National Natural Science Foundation of China(Grant Nos.51971179 and 51971180)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0328)+3 种基金Shaanxi Provincial Natural Science Foundation,China(Grant No.2020JM-112)Guangdong Provincial Science and Technology Program,China(Grant No.2019B090905009)the Fundamental Research Funds for the Central Universities of China(Grant No.D5000210731)Shaanxi Provincial Key R&D Program,China(Grant No.2021KWZ-13)。
文摘L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
基金supported by the National Science and Technology Major Project(2017YFB0102900)the National Natural Science Foundation of China(21633008,21673221 and U1601211)Jilin Province Science and Technology Development Program(20200201001JC,20190201270JC and 20180101030JC)。
文摘Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction reaction(ORR),in which a Zn-rich metal–organic framework(MOF)is used as an in situ generated support to confine the growth of PtZn particles.Despite requiring high-temperature treatment,the intermetallic L1_(0)-PtZn particles exhibit a small mean size of3.95 nm,which confers the catalysts with high electrochemical active surface area(81.9 m^(2)g_(Pt)^(-1))and atomic utilization.The Pt electron structure and binding strength between Pt and oxygen intermediates are optimized through ligand effect and compressive strain.These advantages result in ORR mass activity and specific activity of 0.926 A mg_(Pt)^(-1) and 1.13 mA cm^(-2),respectively,which are 5.4 and 4.0 times those of commercial Pt/C.The stable L10structure provides the catalysts with superb durability;only a halfwave potential loss of 11 mV is observed after 30,000 cycles of accelerated stress tests,through which the structure evolves into a more stable PtZn-Pt core-shell structure.Therefore,the development of a Zn-based MOF as a catalyst support is demonstrated,providing a synergy strategy to prepare highly dispersed intermetallic alloys with high activity and durability.
基金financially supported by the National Natural Science Foundation of China(Grant nos.51871045,52071070,and 51690161)the Fundamental Research Funds for the Central Universities(Grant no.N2017003)the Doctoral Start-up Foundation of Liaoning Province(Grant no.2019-BS-116)。
文摘Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.
基金supported by the National Natural Science Foundation of China under Grant(Nos.51871078,51631001 and 51590882)the National Key R&D Program of China(No.2016YFA0200102)Heilongjiang Science Foundation(No.E2018028).
文摘The ordered Pt-based intermetallic nanoparticles(NPs)with small size show superior magnetic or catalytic properties,but the synthesis of these NPs still remains a great challenge due to the requirement of high temperature annealing for the formation of the ordered phase,which usually leads to sintering of the NPs.Here,we report a simple approach to directly synthesize monodisperse ordered L1_(0)-FePt NPs with average size 10.7 nm without further annealing or doping the third metal atoms,in which hexadecyltrimethylammonium chloride(CTAC)was found to be the key inducing agent for the thermodynamic growth of the Fe and Pt atoms into the ordered intermetallic structure in the synthetic process.In particular,10.7 nm L1_(0)-FePt NPs synthesized by the proper amount of CTAC show a coercivity of 3.15 kOe and saturation magnetization of 45 emu/g at room temperature.The current CTAC-assisted synthetic strategy makes it possible to deeply understand the formation of the ordered Pt-based intermetallic NP in solution phase synthesis.