Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ...Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.展开更多
目的:总结MAB21L2基因的变异和临床特点,并与高度同源的MAB21L1基因进行比较。方法:对中山眼科中心临床基因数据库中MAB21L2基因变异患者进行基因型和表型分析,回顾性分析既往文献报道的MAB21L2基因和高度同源基因MAB21L1变异的表型-基...目的:总结MAB21L2基因的变异和临床特点,并与高度同源的MAB21L1基因进行比较。方法:对中山眼科中心临床基因数据库中MAB21L2基因变异患者进行基因型和表型分析,回顾性分析既往文献报道的MAB21L2基因和高度同源基因MAB21L1变异的表型-基因型的关系。结果:在2个小眼畸形家系中发现2个MAB21L2基因杂合变异:先证者1携带已知变异c.151C>G/p.(Arg51Gly),患者双眼小眼畸形伴虹膜脉络膜缺损,伴骨关节屈曲。母亲携带相同杂合变异但表型正常;先证者2携带未报道的变异c.1042G>T/p.(Glu348*),左眼小眼畸形,右眼正常且无全身异常。结合文献回顾发现,在显性遗传模式下,80%的MAB21L2杂合致病变异(20/25)和100%的MAB21L1杂合致病变异(25/25)发生在氨基酸49-52区域,导致小眼无眼或眼缺损异常(microphthalmia,anophthalmia or coloboma,MAC);携带该区域MAB21L2基因杂合突变的患者除MAC外,部分还伴骨骼关节发育异常(12/24,50%);杂合截短变异发生在MAB21L2基因可导致MAC(5/5,100%),而发生在MAB21L1则不致病。结论:在2个小眼畸形家系中发现了MAB21L2基因1个新致病变异和1个已知热点致病变异,通过文献综述比较和总结了MAB21L1和MAB21L2基因的突变频谱以及基因型-表型相互关系,为此类基因缺陷导致遗传病的诊断和鉴别诊断提供依据。展开更多
基金supported by the National Natural Science Foundation of China,Nos.81730033,82171193(to XG)the Key Talent Project for Strengthening Health during the 13^(th)Five-Year Plan Period,No.ZDRCA2016069(to XG)+1 种基金the National Key R&D Program of China,No.2018YFC2001901(to XG)Jiangsu Provincial Medical Key Discipline,No.ZDXK202232(to XG)。
文摘Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.
文摘目的:总结MAB21L2基因的变异和临床特点,并与高度同源的MAB21L1基因进行比较。方法:对中山眼科中心临床基因数据库中MAB21L2基因变异患者进行基因型和表型分析,回顾性分析既往文献报道的MAB21L2基因和高度同源基因MAB21L1变异的表型-基因型的关系。结果:在2个小眼畸形家系中发现2个MAB21L2基因杂合变异:先证者1携带已知变异c.151C>G/p.(Arg51Gly),患者双眼小眼畸形伴虹膜脉络膜缺损,伴骨关节屈曲。母亲携带相同杂合变异但表型正常;先证者2携带未报道的变异c.1042G>T/p.(Glu348*),左眼小眼畸形,右眼正常且无全身异常。结合文献回顾发现,在显性遗传模式下,80%的MAB21L2杂合致病变异(20/25)和100%的MAB21L1杂合致病变异(25/25)发生在氨基酸49-52区域,导致小眼无眼或眼缺损异常(microphthalmia,anophthalmia or coloboma,MAC);携带该区域MAB21L2基因杂合突变的患者除MAC外,部分还伴骨骼关节发育异常(12/24,50%);杂合截短变异发生在MAB21L2基因可导致MAC(5/5,100%),而发生在MAB21L1则不致病。结论:在2个小眼畸形家系中发现了MAB21L2基因1个新致病变异和1个已知热点致病变异,通过文献综述比较和总结了MAB21L1和MAB21L2基因的突变频谱以及基因型-表型相互关系,为此类基因缺陷导致遗传病的诊断和鉴别诊断提供依据。