A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 7...A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 700 to 1 000 ~C for 12 h. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance techniques were employed to characterize the samples. The experimental results indicated that the capability of glass forming in this system is superior to that of L20-A1203-TiO2-PzO~. The glass has an amorphous structure and resultant glass-ceramic mainly consisting of LiTi2(PO4)3 phases. Impurity phases AIPO4, TiO2, TiP207 and unidentified phase were observed. With the enhanced heat-treatment temperature, grain grew gradually and lithium ion conductivity of glass-ceramics increased accordingly, the related impedance semicircles were depressed gradually and even disappeared, which could be analytically explained by the coordinate action of the 'Constant phase element' (CPE) model and the 'Concept of Mismatch and Relaxation' model (CMR). When the sample is devitrified at 1 000 ~C, the maximum room temperature lithium ion conductivity comes up to 4.1 x 10-4 S/cm, which is suitable for the application as an electrolyte of all-solid-state lithium batteries.展开更多
From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are o...From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are obtained, respectively. For both complexes 1 and 2, the unsaturated five-coordinate coordination environment to the catalytic active centers (Zn2+ ions) permits the monomer insertion for the effective solution copolymerization of cyclohexene oxide and maleic anhydride. All the solution copolymerizations afford poly(ester-co-ether)s, while lower catalyst and co-catalyst concentrations are helpful for the formation of alternating polyester. Of the three co-catalysts, 4-(dimethylamino)pyridine is found to be the most efficient, while an excess thereof is detrimental for chain growth of the copolymers.展开更多
基金National Basic Research Program of China (No.2009CB939704)National Natural Science Foundation of China (Nos.51032005, 60808024)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘A lithium ion conductive solid electrolyte, L20-AI203-TiO2-SiO2-P20s glass with NASICON- type structure have been synthesized and transformed into glass-ceramic through thermal-treatment at various temperatures from 700 to 1 000 ~C for 12 h. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance techniques were employed to characterize the samples. The experimental results indicated that the capability of glass forming in this system is superior to that of L20-A1203-TiO2-PzO~. The glass has an amorphous structure and resultant glass-ceramic mainly consisting of LiTi2(PO4)3 phases. Impurity phases AIPO4, TiO2, TiP207 and unidentified phase were observed. With the enhanced heat-treatment temperature, grain grew gradually and lithium ion conductivity of glass-ceramics increased accordingly, the related impedance semicircles were depressed gradually and even disappeared, which could be analytically explained by the coordinate action of the 'Constant phase element' (CPE) model and the 'Concept of Mismatch and Relaxation' model (CMR). When the sample is devitrified at 1 000 ~C, the maximum room temperature lithium ion conductivity comes up to 4.1 x 10-4 S/cm, which is suitable for the application as an electrolyte of all-solid-state lithium batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.91222201,21173165 and 20871098)the Program for New Century Excellent Talents in Universities from the Ministry of Education of China(No.NCET-10-0936)+4 种基金the State Key Laboratory of Structure Chemistry(20100014)the Provincial Natural Foundation(2011JQ2011) of Shaanxithe Education Committee Foundation of Shaanxi Province(11JK0588,12JK0577)Graduate Innovation and Creativity Fund(YZZ12038) of Northwest UniversityHong Kong Research Grants Council(HKBU 202407 and FRG/06-07/II-16)
文摘From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are obtained, respectively. For both complexes 1 and 2, the unsaturated five-coordinate coordination environment to the catalytic active centers (Zn2+ ions) permits the monomer insertion for the effective solution copolymerization of cyclohexene oxide and maleic anhydride. All the solution copolymerizations afford poly(ester-co-ether)s, while lower catalyst and co-catalyst concentrations are helpful for the formation of alternating polyester. Of the three co-catalysts, 4-(dimethylamino)pyridine is found to be the most efficient, while an excess thereof is detrimental for chain growth of the copolymers.