Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margi...1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different展开更多
LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within...LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within errors.It is the first time that the microgranular enclaves age in Kalamaili area was determined.Petrochemistry and geochemistry research shows the characteristics of host rock as follows:展开更多
Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons fro...Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.展开更多
The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock as...The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.展开更多
The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only cons...The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.展开更多
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or ura...Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or uranium matrix effect and alpha dose matrix effect,and illustrates the correction of these three effects.In addition,we point out the limitation and possible problems of the existing correction methods.展开更多
The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<s...The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<sub>2</sub>O,and depletion of light rare earth elements.They should be originated from a depleted asthenosphere mantle, belonging to ancient oceanic crust ophiolitic volcanic rock association.Compared with the Longba tholeiitic basalt,the Ganlongtang tholeiitic basalt shows展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area ...The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).展开更多
Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed ...Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed to result from partial melting of the mantle wedge peridotites metasomatized by slab melts derived from the subducting oceanic slab, which represent arc magmatic markers of the oceanic subduction zone. However, whether the Hegenshan ocean basin of the Paleo-Asian Ocean was in its subduction stage in the Early Permian requires further study for a final conclusion, and what is the evolution process of the oceanic subduction and lithospheric mantle of the Hegenshan suture zone remains speculative for the lack of further definitely petrological and chronological evidence and constraints. Therefore, this study carried out zircon LA-ICP-MS U-Pb geochronology and geochemistry on the Bayanhua Nb-enriched gabbro to discuss its origin, in order to provide new evidence for the tectonic evolution of the Hegenshan suture zone of the eastern Central Asian Orogenic Belt.展开更多
Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the fi...Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.展开更多
As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The m...As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The molybdenum mineralization in the East Qinling-Dabie belt clusters into three groups or mineralization pulses:233-221,148-138 and 131-112 Ma(Mao et al,2008).展开更多
A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) ...A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group, are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images. The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (^207pb/206pb apparent ages are (2 325±3)-(2 573 ±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (^206pb/^238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.展开更多
Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt ...Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its展开更多
Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some...Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.展开更多
Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zh...Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).展开更多
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
基金co-funded by the China Geological Survey (No.12120114052801)the DREAM project of MOST, China (NO. 2016YFC0600401)
文摘1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different
文摘LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within errors.It is the first time that the microgranular enclaves age in Kalamaili area was determined.Petrochemistry and geochemistry research shows the characteristics of host rock as follows:
基金Supported by the National Oil-Gas Special Project (Grant No.XQ-2004-07)the China Petrolleum Chemical Corporation (Grant No. P04031)the Key Labora-tory of Continental Dynamics,Northwest University
文摘Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.
基金Supported jointly by the National Natural Science Foundation of China (Grant Nos. 40572050 and 40234041) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China
文摘The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.
基金This research was supported by the National Natural Science Foundation of China (No. 40372036)the Key Project of the Ministry of Education, China (No. 306007).
文摘The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
文摘Matrix effect primarily impacts the accuracy and precision of zircon LA-ICP-MS U-Pb data.This paper describes three types of matrix effect in zircon LA-ICPMS U-Pb dating,i.e.,the element matrix effect,high Ddpa or uranium matrix effect and alpha dose matrix effect,and illustrates the correction of these three effects.In addition,we point out the limitation and possible problems of the existing correction methods.
文摘The detailed geochemical research indicates that the tholeiitic basalts from Ganlongtang-Longba ophiolitic m(?)lange exhibit distinctive geochemical characteristics of high TiO<sub>2</sub> and low K<sub>2</sub>O,and depletion of light rare earth elements.They should be originated from a depleted asthenosphere mantle, belonging to ancient oceanic crust ophiolitic volcanic rock association.Compared with the Longba tholeiitic basalt,the Ganlongtang tholeiitic basalt shows
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
基金supports by the Basic Research Foundation of the Institute of Geomechanics,CAGS,China (DZLXJK200703)the National Natural Science Foundation of China(40342015)+1 种基金SinoProbe-Deep Exploration in China(SinoProbe-08)the National Science Foundation(USA) Instrumentation and Facilities Program (EAR-0443387)
文摘The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).
基金funded by the National Natural Science Foundation of China (grant No.41502211)the China Geological Survey (grants No.1212011120701 and 1212011120711)Hebei Province Education Department (grant No.ZC20165013)
文摘Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed to result from partial melting of the mantle wedge peridotites metasomatized by slab melts derived from the subducting oceanic slab, which represent arc magmatic markers of the oceanic subduction zone. However, whether the Hegenshan ocean basin of the Paleo-Asian Ocean was in its subduction stage in the Early Permian requires further study for a final conclusion, and what is the evolution process of the oceanic subduction and lithospheric mantle of the Hegenshan suture zone remains speculative for the lack of further definitely petrological and chronological evidence and constraints. Therefore, this study carried out zircon LA-ICP-MS U-Pb geochronology and geochemistry on the Bayanhua Nb-enriched gabbro to discuss its origin, in order to provide new evidence for the tectonic evolution of the Hegenshan suture zone of the eastern Central Asian Orogenic Belt.
基金financially supported by the Ministry of Land and Natural Resources (Grant No. 201311116)the National Natural Science Foundation of China (Grant No. 41173065)+1 种基金Ministry of Science and Technology (No. 2012FY120100)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology (Grant No. J1403)
文摘Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.
文摘As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The molybdenum mineralization in the East Qinling-Dabie belt clusters into three groups or mineralization pulses:233-221,148-138 and 131-112 Ma(Mao et al,2008).
基金This paper is supported by the China Geological Survey (No. 1212010510416)
文摘A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group, are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images. The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (^207pb/206pb apparent ages are (2 325±3)-(2 573 ±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (^206pb/^238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.
基金supported by the National Science Foundation of China (grant No. 41272223)China Geological Survey (grants No. DD20160049, 1212011220247 and 12120110300015)
文摘Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its
基金financially supported by the Institute of Geomechanics in Chinese Academy of Geological Sciences (grant No. DZLXJK201608)Geological Survey Project (grant No. DD20160183)+1 种基金the Key Lab of Shale Oil and Gas Geological of Chinese Academy of Geological Sciencesthe Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits
文摘Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.
基金supported by the National Nature Science Foundation of China(grant No.U1504405)
文摘Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).