C 2 and LaC + 2 were studied using Hartree Fock(HF), B3LYP (Becke 3 paremeter Lee Yang Parr) density functional method, second order Mφller Plesset perturbation(MP2) and coupled cluster singles and doub...C 2 and LaC + 2 were studied using Hartree Fock(HF), B3LYP (Becke 3 paremeter Lee Yang Parr) density functional method, second order Mφller Plesset perturbation(MP2) and coupled cluster singles and doubles with non iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C 2, all the methods performed well for low spin state(singlet), while only HF and B3LYP remained so for high spin state(triplet). For LaC + 2, four isomers were presented and fully optimized. The results suggested that linear isomers with C ∞v and D ∞h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C 2v and C s symmetries, they were local minima except C 2v at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C 2v and C s symmetries offer the largest values and therefore correspond to the most stable structure. For La—C bond lengths, B3LYP gives the shortest, the order is B3LYP<HF<MP2<CCSD(T) for all the methods.展开更多
文摘C 2 and LaC + 2 were studied using Hartree Fock(HF), B3LYP (Becke 3 paremeter Lee Yang Parr) density functional method, second order Mφller Plesset perturbation(MP2) and coupled cluster singles and doubles with non iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C 2, all the methods performed well for low spin state(singlet), while only HF and B3LYP remained so for high spin state(triplet). For LaC + 2, four isomers were presented and fully optimized. The results suggested that linear isomers with C ∞v and D ∞h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C 2v and C s symmetries, they were local minima except C 2v at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C 2v and C s symmetries offer the largest values and therefore correspond to the most stable structure. For La—C bond lengths, B3LYP gives the shortest, the order is B3LYP<HF<MP2<CCSD(T) for all the methods.