F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the...F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.展开更多
Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid...Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.展开更多
BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is ...BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-p...Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-prohibitive for biocatalysis at scale yet tightly regulated in host cells.A highly challenging task for P450 catalysis has been to develop an alternative and biocompatible electrondonating system.Here we engineered P450 BM3 to favor reduced nicotinamide cytosine dinucleotide(NCDH)and created non-natural cofactor-dependent P450 catalysis.Two outstanding mutants were identified with over 640-fold NCDH preference improvement and good catalytic efficiencies of over15,000 M^(-1)s^(-1)for the oxidation of the fatty acid probe 12-(para-nitrophenoxy)-dodecanoate.Molecular docking analysis indicated that these mutants bear a compacted cofactor entrance.Upon fusing with an NCD-dependent formate dehydrogenase,fused proteins functioned as NCDH-specific P450catalysts by using formate as the electron donor.Importantly,these mutants and fusions catalyzed NCDH-dependent hydroxylation of fatty acids with similar chain length preference to those by natural P450 BM3 in the presence of NADPH and also similar regioselectivity for subterminal hydroxylation of lauric acid.As P450 BM3 and its variants are catalytically powerful to take diverse substrates and convey different reaction paths,our results offer an exciting opportunity to devise advanced cell factories that convey oxidative biocatalysis with an orthogonal reducing power supply system.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GR...BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.展开更多
Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber compositio...Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported.Method Lambs were injected with 0(control)or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth.At the age of 3 and 32 weeks,longissimus dorsi(LD)muscle samples were obtained to explore the effect of VA on myofiber type composition.In vitro,we investigated the effects of RA on myofiber type composition and intrinsic mechanisms.Results The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest.VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep.Further exploration revealed that VA elevated PGC-1αmRNA and protein contents,and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep.In addition,the number of type I myofibers with RA treatment was significantly increased,and type IIx myofibers was significantly decreased in primary myoblasts.Consistent with in vivo experiment,RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep.We then used si-PGC-1αto inhibit PGC-1αexpression and found that si-PGC-1αsignificantly abrogated RA-induced the formation of type I myofibers,mitochondrial biogenesis,MitoTracker staining intensity,UQCRC1 and ATP5A1 expression,SDH activity,and enhanced the level of type IIx muscle fibers.These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1αexpression,and increased type I myofibers.In order to prove that the effect of RA on the level of PGC-1αis caused by p38 MAPK signaling,we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor,which significantly reduced RA-induced PGC-1αand MyHC I levels.Conclusion VA promoted PGC-1αexpression through the p38 MAPK signaling pathway,improved mitochondrial biogenesis,and altered the composition of muscle fiber type.展开更多
Synthesis of p toluidine o sulfonic acid from p toluidine by sulfonation in solvent was studied,and effects of various reaction conditions or factors on the reaction were discussed in detail.As a result,the follow...Synthesis of p toluidine o sulfonic acid from p toluidine by sulfonation in solvent was studied,and effects of various reaction conditions or factors on the reaction were discussed in detail.As a result,the following optimum process conditions are presented:50 mL dichlorobenzene,2%~5% oleum,molar ratio of sulfonating agent to p toluidine is 1.10~1.12,oleum is dropped in the reaction system in 10 min or so,sulfate formation time is 2 h,distillation lasts 8 h.Under the above conditions,the purity and the yield of p toluidine o sulfonic acid are better than that of the same product made in Japan.展开更多
Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under isch...Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.展开更多
AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apo-ptosis in rats via a p53-dependent mitochondrial path-way. METHODS: Forty-five male Sprague-Dawley rats we...AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apo-ptosis in rats via a p53-dependent mitochondrial path-way. METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group,rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were de-termined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis. RESULTS: After 8 wk of treatment, GA significantly re-duced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P<0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P<0.05), attenuated the changes in liver his-topathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P<0.05) in CCl4 -treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7.87% ± 0.66% to 3.68% ± 0.32%, P<0.05) compared with the CCl4 group. GA also decreased the expression level of cleaved caspase-3 compared to the CCl4 group. TU-NEL assay indicated that GA significantly diminished the number of TUNEL-positive cells compared with the CCl4 group (P<0.05). GA treatment clearly decreased the level of p53 (P<0.05) detected by immunohis-tochemistry and Western blotting analysis. Compared with the CCl4 group, we also found that GA reduced the Bax/Bcl-2 ratio (P<0.05), the expression of cleaved caspase-3 (P<0.05), cleaved caspase-9 (P<0.05), and inhibited cytochrome C and second mitochondria-derived activator of caspases (Smac) release from mito-chondria to cytoplasm, i.e. , GA reduced the expressionlevel of Smac, which inhibited c-IAP1 activity (P<0.05), ultimately inhibiting the activity of caspase-3, according to Western blotting analysis. As a result, GA suppressed activation of the caspase cascades and prevented he-patocyte apoptosis.展开更多
基金supported by the National Natural Science Foundation of China (32273084)the Special Funds for Construction of Innovative Provinces in Hunan Province,China (2020NK2032)+2 种基金the Natural Science Foundation of Hunan Province,China (2020JJ4368)Innovation Foundation for Postgraduate of Hunan Province,China (CX20220670)Innovation Foundation for Postgraduate of Hunan Agricultural University,China (2022XC010)。
文摘F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.
基金supported by the National Natural Science Foundation of China(Grant No.21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(Grant No.18964308D)the Key Program of Natural Science Foundation of Hebei Province(Grant No.B2020202048).
文摘Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.
基金Supported by the Ningxia Natural Science Foundation,No.2022AAC03144.
文摘BACKGROUND Gastric cancer(GC)is a common gastrointestinal malignancy worldwide.Based on cancer-related mortality,the current prevention and treatment strategies for GC still show poor clinical results.Therefore,it is important to find effective drug treatment targets.AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid(18β-GRA)regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells.Cell cycle and apoptosis were detected by flow cytometry,cell migration was detected by a wound healing assay,the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated,and the cell autophagy level was determined by MDC staining.TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention,and then the protein-protein interaction was predicted using STRING(https://string-db.org/).MicroRNAs(miRNAs)transcriptome analysis was used to detect the miRNA differential expression profile,and use miRBase(https://www.mirbase/)and TargetScan(https://www.targetscan.org/)to predict the miRNA and complementary binding sites.Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells,and western blot was used to detect the expression of autophagy related proteins.Finally,the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.RESULTS 18β-GRA could inhibit GC cells viability,promote cell apoptosis,block cell cycle,reduce cell wound healing ability,and inhibit the GC cells growth in vivo.MDC staining results showed that 18β-GRA could promote autophagy in GC cells.By TMT proteomic analysis and miRNAs transcriptome analysis,it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells.Subsequently,we verified that TGM2 is the target of miR-345-5p,and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2.Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced,and LC3II,ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA.Overexpression of miR-345-5p not only inhibited the expression of TGM2,but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金supported by the National Key R&D Program of China(2019YFA0904900)the National Natural Science Foundation of China(21877112,21837002,21721004)。
文摘Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-prohibitive for biocatalysis at scale yet tightly regulated in host cells.A highly challenging task for P450 catalysis has been to develop an alternative and biocompatible electrondonating system.Here we engineered P450 BM3 to favor reduced nicotinamide cytosine dinucleotide(NCDH)and created non-natural cofactor-dependent P450 catalysis.Two outstanding mutants were identified with over 640-fold NCDH preference improvement and good catalytic efficiencies of over15,000 M^(-1)s^(-1)for the oxidation of the fatty acid probe 12-(para-nitrophenoxy)-dodecanoate.Molecular docking analysis indicated that these mutants bear a compacted cofactor entrance.Upon fusing with an NCD-dependent formate dehydrogenase,fused proteins functioned as NCDH-specific P450catalysts by using formate as the electron donor.Importantly,these mutants and fusions catalyzed NCDH-dependent hydroxylation of fatty acids with similar chain length preference to those by natural P450 BM3 in the presence of NADPH and also similar regioselectivity for subterminal hydroxylation of lauric acid.As P450 BM3 and its variants are catalytically powerful to take diverse substrates and convey different reaction paths,our results offer an exciting opportunity to devise advanced cell factories that convey oxidative biocatalysis with an orthogonal reducing power supply system.
基金Ningxia Medical University Project,No. XZ2021005Ningxia Natural Science Foundation,Nos. 2022AAC03144 and 2022AAC02039National Natural Science Foundation of China,No. 82260879
文摘BACKGROUND Gastric cancer(GC)is one of the most common cancer types worldwide,and its prevention and treatment methods have garnered much attention.As the active ingredient of licorice,18β-glycyrrhetinic acid(18β-GRA)has a variety of pharmacological effects.The aim of this study was to explore the effective target of 18β-GRA in the treatment of GC,in order to provide effective ideas for the clinical prevention and treatment of GC.AIM To investigate the mechanism of 18β-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells.METHODS Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs(miRNAs)in GC cells after 18β-GRA intervention.Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability,cell colony formation ability was detected by the clone formation assay,and flow cytometry was used to detect the cell cycle and apoptosis.A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells.Tumor tissue morphology was observed by hematoxylin and eosin staining,and microtubule-associated protein light chain 3(LC3)expression was detected by immunohistochemistry.TransmiR,STRING,and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3(STAT3)-related information.Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction(qPCR)and the expression levels of STAT3,phosphorylated STAT3(p-STAT3),and LC3 were detected by western blot analysis.The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system.AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label.LC3 was labeled and autophagy flow was observed under a confocal laser microscope.RESULTS The expression of miR-328-3p was significantly upregulated after 18β-GRA intervention in AGS cells(P=4.51E-06).Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability,arrested the cell cycle in the G0/G1 phase,promoted cell apoptosis,and inhibited the growth of subcutaneous tumors in BALB/c nude mice(P<0.01).No obvious necrosis was observed in the tumor tissue in the negative control group(no drug intervention or lentivirus transfection)and vector group(the blank vector for lentivirus transfection),and more cells were loose and necrotic in the miR-328-3p group.Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3,and STAT3 was closely related to autophagy markers such as p62.After overexpressing miR-328-3p,the expression level of STAT3 mRNA was significantly decreased(P<0.01)and p-STAT3 was downregulated(P<0.05).The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT33’untranslated regions of the wild-type reporter vector group was significantly decreased(P<0.001).Overexpressed miR-328-3p combined with bafilomycin A1(Baf A1)was used to detect the expression of LC3 II.Compared with the vector group,the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated(P<0.05),and compared with the Baf A1 group,the expression level of LC3 II in the overexpressed miR-328-3p+Baf A1 group was upregulated(P<0.01).The expression of LC3 II was detected after intervention of 18β-GRA in GC cells,and the results were consistent with the results of miR-328-3p overexpression(P<0.05).Additional studies showed that 18β-GRA promoted autophagy flow by promoting autophagosome synthesis(P<0.001).qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention(P<0.05).Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention(P<0.05).CONCLUSION 18β-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.
基金funded by the National Natural Science Foundation of China(31972559)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University(2022JQPYGC01).
文摘Background Vitamin A(VA)and its metabolite,retinoic acid(RA),are of great interest for their wide range of physiological functions.However,the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported.Method Lambs were injected with 0(control)or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth.At the age of 3 and 32 weeks,longissimus dorsi(LD)muscle samples were obtained to explore the effect of VA on myofiber type composition.In vitro,we investigated the effects of RA on myofiber type composition and intrinsic mechanisms.Results The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest.VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep.Further exploration revealed that VA elevated PGC-1αmRNA and protein contents,and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep.In addition,the number of type I myofibers with RA treatment was significantly increased,and type IIx myofibers was significantly decreased in primary myoblasts.Consistent with in vivo experiment,RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep.We then used si-PGC-1αto inhibit PGC-1αexpression and found that si-PGC-1αsignificantly abrogated RA-induced the formation of type I myofibers,mitochondrial biogenesis,MitoTracker staining intensity,UQCRC1 and ATP5A1 expression,SDH activity,and enhanced the level of type IIx muscle fibers.These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1αexpression,and increased type I myofibers.In order to prove that the effect of RA on the level of PGC-1αis caused by p38 MAPK signaling,we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor,which significantly reduced RA-induced PGC-1αand MyHC I levels.Conclusion VA promoted PGC-1αexpression through the p38 MAPK signaling pathway,improved mitochondrial biogenesis,and altered the composition of muscle fiber type.
文摘Synthesis of p toluidine o sulfonic acid from p toluidine by sulfonation in solvent was studied,and effects of various reaction conditions or factors on the reaction were discussed in detail.As a result,the following optimum process conditions are presented:50 mL dichlorobenzene,2%~5% oleum,molar ratio of sulfonating agent to p toluidine is 1.10~1.12,oleum is dropped in the reaction system in 10 min or so,sulfate formation time is 2 h,distillation lasts 8 h.Under the above conditions,the purity and the yield of p toluidine o sulfonic acid are better than that of the same product made in Japan.
基金the National Natural Science Foundation of China (No. 30500189)
文摘Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.
基金Supported by Leading Academic Discipline Project of State Administration of Traditional Chinese Medicine of China
文摘AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apo-ptosis in rats via a p53-dependent mitochondrial path-way. METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group,rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were de-termined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis. RESULTS: After 8 wk of treatment, GA significantly re-duced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P<0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P<0.05), attenuated the changes in liver his-topathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P<0.05) in CCl4 -treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7.87% ± 0.66% to 3.68% ± 0.32%, P<0.05) compared with the CCl4 group. GA also decreased the expression level of cleaved caspase-3 compared to the CCl4 group. TU-NEL assay indicated that GA significantly diminished the number of TUNEL-positive cells compared with the CCl4 group (P<0.05). GA treatment clearly decreased the level of p53 (P<0.05) detected by immunohis-tochemistry and Western blotting analysis. Compared with the CCl4 group, we also found that GA reduced the Bax/Bcl-2 ratio (P<0.05), the expression of cleaved caspase-3 (P<0.05), cleaved caspase-9 (P<0.05), and inhibited cytochrome C and second mitochondria-derived activator of caspases (Smac) release from mito-chondria to cytoplasm, i.e. , GA reduced the expressionlevel of Smac, which inhibited c-IAP1 activity (P<0.05), ultimately inhibiting the activity of caspase-3, according to Western blotting analysis. As a result, GA suppressed activation of the caspase cascades and prevented he-patocyte apoptosis.