期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery 被引量:1
1
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties
2
作者 A.S.JOHN B.MAHANTHESH G.LORENZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期677-694,共18页
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na... Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect. 展开更多
关键词 hybrid nanofluid cone-disk system laminar flow variable fluid property Nusselt number
下载PDF
Discovery of nano organo-clay complex pore-fractures in shale and its scientific significance:A case study of Cretaceous Qingshankou Formation shale,Songliao Basin,NE China
3
作者 SUN Longde WANG Fenglan +5 位作者 BAI Xuefeng FENG Zihui SHAO Hongmei ZENG Huasen GAO Bo WANG Yongchao 《Petroleum Exploration and Development》 SCIE 2024年第4期813-825,共13页
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru... A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws. 展开更多
关键词 Songliao Basin Cretaceous Qingshankou Formation laminar shale oil nanoscale organo-clay complex pore-fractures organo-clay complex diagenesis
下载PDF
Hardening mechanism and thermal-solid coupling model of laminar plasma surface hardening of 65 Mn steel
4
作者 Xiuquan CAO Lin WANG +2 位作者 Haoming XU Guangzhong HU Chao LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期110-120,共11页
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h... In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel. 展开更多
关键词 65 Mn steel laminar plasma surface hardening hardening mechanism microstructure characteristics thermal-solid coupling model
下载PDF
Flow Control with Intermittent Disturbance for the Laminar Separation Bubble on a NACA633-421 Airfoil
5
作者 SIPKADUWA MADUWA GURUGE Supun Induwara Perera LI Linkai WANG Shilong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期1-12,共12页
This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th... This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude. 展开更多
关键词 laminar separation bubble intermittent disturbance control driving frequency driving amplitude synthetic jet actuator
下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
6
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics Explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
下载PDF
Impact of the Inlet Flow Angle and Outlet Placement on the Indoor Air Quality
7
作者 Ikram Mostefa Tounsi Mustapha Boussoufi +1 位作者 Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2603-2616,共14页
This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(... This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity. 展开更多
关键词 Mixed convection air-CO_(2)mixture inlet inclination angles laminarflow indoor air quality
下载PDF
Uncertainty analysis of turbulence model in capturing flows involving laminarization and retransition
8
作者 Hongkang LIU Shishang ZHANG +3 位作者 Yong ZOU Wu YUAN Tanghong LIU Yatian ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期148-164,共17页
Flows experiencing laminarization and retransition are universal and crucial in many engineering applications.The objective of this study is to conduct an uncertainty quantification and sensitivity analysis of turbule... Flows experiencing laminarization and retransition are universal and crucial in many engineering applications.The objective of this study is to conduct an uncertainty quantification and sensitivity analysis of turbulence model closure coefficients in capturing laminarization and retransition for a rapidly contracting channel flow.Specifically,two commonly used turbulence models are considered:the Spalart-Allmaras(SA)one-equation model and the Menter Shear Stress Transport(SST)two-equation model.Thereby,a series of steady Reynolds Averaged Navier-Stokes(RANS)predictions of aero-engine intake acceleration scenarios are carried out with the purposely designed turbulence model closure coefficients.As a result,both SA and SST models fail to capture the retransition phenomenon though they achieve pretty good performance in laminarization.Using the non-intrusive polynomial chaos method,solution uncertainties in velocity,pressure,and surface friction are quantified and analyzed,which reveals that the SST model possesses much great uncertainty in the non-laminar regime,especially for the logarithmic law prediction.Besides,a sensitivity analysis is performed to identify the critical contributors to the solution uncertainty,and then the correlations between the closure coefficients and the deviations of the outputs of interest are obtained via the linear regression method.The results indicate that the diffusion-related constants are the dominant uncertainty contributors for both SA and SST models.Furthermore,the remarkably strong correlation between the critical closure coefficients and the outputs might be a good guide to recalibrate and even optimize the commonly used turbulence models. 展开更多
关键词 laminarization Retransition Reynolds-averaged NavierStokes simulation Turbulence modeling Uncertainty analysis
原文传递
CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers 被引量:2
9
作者 Songsong Wang Xia Xiong +5 位作者 Peiqiao Liu Qiongzhi Zhang Qian Zhang Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期297-309,共13页
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi... This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers. 展开更多
关键词 Dual shaft eccentric mixers Non-Newtonian fluid Mixing Laminar flow Computational fluid dynamics
下载PDF
Effect of CO_(2) dilution on laminar burning velocities,combustion characteristics and NO_(x) emissions of CH_(4)/air mixtures 被引量:2
10
作者 Wenlong Dong Longkai Xiang +2 位作者 Jian Gao Bingbing Qiu Huaqiang Chu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期119-136,共18页
The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed ... The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases. 展开更多
关键词 CO_(2)dilution Laminar burning velocity Adiabatic flame temperature Sensitivity analysis
下载PDF
Laminar Composite Solid Electrolyte with Poly(Ethylene Oxide)-Threaded Metal-Organic Framework Nanosheets for High-Performance All-Solid-State Lithium Battery 被引量:1
11
作者 Na Peng Weijie Kou +3 位作者 Wenjia Wu Shiyuan Guo Yan Wang Jingtao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期264-273,共10页
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el... Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes. 展开更多
关键词 all-solid-state lithium battery ion conduction laminar composite solid electrolyte poly(ethylene oxide)-threaded metal-organic framework nanosheet structural stability
下载PDF
从亚临界到临界雷诺数圆柱绕流和分离泡的大涡模拟
12
作者 赵志明 王嘉松 +1 位作者 龚逸纲 徐海博 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期219-231,共13页
A large eddy simulation of wall-adapting local eddy-viscosity model(LES-WALE)is used to simulate the threedimensional flow around a circular cylinder with a diameter of 0.25 m from sub-critical to super-critical Reyno... A large eddy simulation of wall-adapting local eddy-viscosity model(LES-WALE)is used to simulate the threedimensional flow around a circular cylinder with a diameter of 0.25 m from sub-critical to super-critical Reynolds numbers at 1×10^(5),2.5×10^(5),and 7.2×10^(5),respectively.The present results such as drag crisis,surface pressure distribution,and Strouhal number are in good agreement with the classical experimental data.When entering the critical region,a small plateau was found on the pressure distribution curves,corresponding to the appearance of laminar separation bubbles,and the separation point is delayed and the recirculation bubbles become narrowed and shortened.The tangential velocity of the cylinder surface changes from positive to negative at the separation point.The instantaneous vorticity and timeaveraging separation bubbles embody an unstable feature.Within the separation bubble,the pressure varies dramatically with time,but not with position.The surface pressure fluctuates greatly after the laminar separation bubble appears,and it is gradually stabilized until the basic pressure is reached.The process of laminar separation,transition from laminar flow to turbulent flow and turbulent reattachment is also shown.The three-dimensional Q criterion of vortex structure and the two-dimensional spanwise vorticity reveal the phenomenon that the wake structure narrows with the increase of the Reynolds number. 展开更多
关键词 Large eddy simulation Critical Reynolds number Drag crisis Laminar separation bubble Vortex shedding
下载PDF
Pipes with Trapezoidal Cut Twisted Tape Inserts in the Laminar Flow Regime:Nusselt Number and Friction Coefficient Analysis
13
作者 Shrikant Arunrao Thote Netra Pal Singh 《Fluid Dynamics & Materials Processing》 EI 2023年第2期501-511,共11页
The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number s... The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement. 展开更多
关键词 Friction factor laminar flow Nusselt Number trapezoidal-cut twisted tape
下载PDF
在斜向非定常流动中由层流向湍流转变对模型尺度螺旋桨性能和压力脉动的影响
14
作者 Stefano Gaggero 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期199-218,共20页
In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the pred... In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the prediction of the cavitation inception of marine propulsors is investigated from the point of view of the unsteady functioning and induced pressure pulses.The VP1304(also known as PPTC)test case,for which dedicated data were collected during several workshops,is considered first.After preliminary analyses using RANS,also Detached Eddy Simulations(DES)are included to better account for the vortex dynamics and its influence on pressure pulses.Similarly to what observed in uniform inflow,results show a better agreement with the available measurements of propeller performances and confirm the reliability of the proposed approaches for unsteady,non-cavitating,model scale propeller predictions.The overall cavitation pattern is improved too by the application of the transition sensitive correction to the mass transfer model,but the complex dynamics of bubble cavitation observed in experiments prevents quantitatively better predictions in terms of thrust/torque breakdown and induced pressure pulses levels regardless the use of RANS or DES methods. 展开更多
关键词 Transition sensitive turbulence models CAVITATION Cavitation with laminar flow Mass transfer models Model scale propeller Oblique flow Induced pressure pulses RANS DES
下载PDF
Phase-field simulations of forced flow effect on dendritic growth perpendicular to flow 被引量:4
15
作者 王智平 王军伟 +2 位作者 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期612-617,共6页
The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and ther... The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result. 展开更多
关键词 phase-field method laminar flow dendritic growth computer simulation SOLIDIFICATION flow velocity
下载PDF
Kinetics of cerium(Ⅳ) and fluoride extraction from sulfuric solutions using bifunctional ionic liquid extractant(Bif-ILE)[A336][P204] 被引量:7
16
作者 杨华玲 陈继 +3 位作者 张冬丽 王威 崔红敏 刘郁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1937-1945,共9页
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const... The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation. 展开更多
关键词 Ce(Ⅳ)-F--system Bif-ILE kinetics model extraction kinetics constant interfacial area cell with laminar flow
下载PDF
同步辐射Laminar光栅的研制 被引量:5
17
作者 徐向东 洪义麟 +3 位作者 霍同林 周洪军 陶晓明 傅绍军 《光学技术》 CAS CSCD 2001年第5期459-461,468,共4页
采用全息离子束刻蚀和反应离子刻蚀相结合的新工艺 ,在熔石英基片上成功地刻蚀出 2 0 0l/mm、线空比 4:6、槽深 70nm、刻划面积 60× 2 0mm2 的浅槽矩形Laminar光栅。对改进光栅线条粗糙度和线空比的方法进行了系统的研究。这一新... 采用全息离子束刻蚀和反应离子刻蚀相结合的新工艺 ,在熔石英基片上成功地刻蚀出 2 0 0l/mm、线空比 4:6、槽深 70nm、刻划面积 60× 2 0mm2 的浅槽矩形Laminar光栅。对改进光栅线条粗糙度和线空比的方法进行了系统的研究。这一新工艺相对简单 。 展开更多
关键词 Laminar光栅 全息光刻 离子束刻蚀 反应离子刻蚀 同步辐射
下载PDF
Rod-pinch二极管理论及数值模拟 被引量:4
18
作者 马成刚 邓建军 谢敏 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第2期348-352,共5页
介绍了Rod-pinch二极管的基本结构和工作原理,采用Laminar模型分析了Rod-pinch二极管中的粒子运动过程及其阻抗特性。考虑背景空间离子电荷的影响,用1维Laminar方程分析Rod-pinch二极管中电子的自箍缩过程,并且利用Magic程序对其中的粒... 介绍了Rod-pinch二极管的基本结构和工作原理,采用Laminar模型分析了Rod-pinch二极管中的粒子运动过程及其阻抗特性。考虑背景空间离子电荷的影响,用1维Laminar方程分析Rod-pinch二极管中电子的自箍缩过程,并且利用Magic程序对其中的粒子运动进行数值模拟,求解二极管中的电压和电流,最终得出二极管的阻抗特性,在较低电压下,负极性RPD的性能明显不如正极性RPD。根据临界电流经验公式,初步验证Laminar理论模型的可行性。 展开更多
关键词 Laminar模型 Rod-pinch二极管 数值模拟 阻抗特性
下载PDF
Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition 被引量:4
19
作者 靳宇 朱琳 +1 位作者 薛卫东 李文珍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2994-3001,共8页
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th... A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes. 展开更多
关键词 copper matrix laminar composite superaligned carbon nanotubes ELECTRODEPOSITION
下载PDF
Phase-field simulation of forced flow effect on random preferred growth direction of multiple grains 被引量:1
20
作者 王军伟 朱昌盛 +2 位作者 王智平 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1620-1626,共7页
The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidificati... The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow. 展开更多
关键词 phase-field method multiple grains laminar flow preferred growth direction computer simulation SOLIDIFICATION flow velocity
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部