A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as...A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.展开更多
This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The...This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The WLAN technology is used in the robot. It solves the problem of shielding generated by iron boiler and 11Mbps bandwidth made it possible for video and control stream real-time transmit within the same channel. Though TCP/IP protocol is robust, serial server is a transparent channel but cannot detect error and retransmit the data. In order to improve the reliability of serial communication, a new communication protocol is proposed. Key words boiler tubes - mobile robotics - wireless local area network Project Supported by the National High-Tech Program (Grant No. 2002AA420080)展开更多
This paper proposes the teaching reform of the "Wireless Local Area Network" in the background of "Wireless Business Circle" . At present, WLAN technology is becoming more and more mature, the application is then ...This paper proposes the teaching reform of the "Wireless Local Area Network" in the background of "Wireless Business Circle" . At present, WLAN technology is becoming more and more mature, the application is then becoming more and more extensive, the campus network will grow rapidly on wireless LAN applications especially the research and higher education institutions on the wireless LAN demand is increasing with wireless LAN will have a very broad market development space. GIS business circle analysis model is to determine business enterprise location or expand their existing business outlets of information necessary to say on the map by G1S visual function of the model. This paper makes the combination of the mentioned items that will then and later influence the performance of the model.展开更多
针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据...针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。展开更多
With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to o...With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to overcome signal time-varying. A novel fingerprint positioning algorithm, known as the adaptive radio map with updated method based on hidden Markov model (HMM), is proposed. It is shown that by using a collection of user traces that can be cheaply obtained, the proposed algorithm can take advantage of these data to update the labeled calibration data to further improve the position estimation accuracy. This algorithm is a combination of machine learning, information gain theory and fingerprinting. By collecting data and testing the algorithm in a realistic indoor WLAN environment, the experiment results indicate that, compared with the widely used K nearest neighbor algorithm, the proposed algorithm can improve the positioning accuracy while greatly reduce the calibration effort.展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local ...IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.展开更多
随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针...随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针对这些问题,提出一种基于虚拟局域网(Virtual Local Area Network,VLAN)的多信道卫星通信地面系统的设计方法。该方法充分利用网络划分VLAN技术的隔离性和安全性特征,结合多信道通信技术使用多个信道同时传输业务的特征,提升特征维度,实现高效、可靠的多信道卫星通信,具有易于硬件实现的特点,提高网络通信的吞吐量。展开更多
文摘A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.
文摘This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system, wireless communication strategy, communication procedure and system software of the robot. The WLAN technology is used in the robot. It solves the problem of shielding generated by iron boiler and 11Mbps bandwidth made it possible for video and control stream real-time transmit within the same channel. Though TCP/IP protocol is robust, serial server is a transparent channel but cannot detect error and retransmit the data. In order to improve the reliability of serial communication, a new communication protocol is proposed. Key words boiler tubes - mobile robotics - wireless local area network Project Supported by the National High-Tech Program (Grant No. 2002AA420080)
文摘This paper proposes the teaching reform of the "Wireless Local Area Network" in the background of "Wireless Business Circle" . At present, WLAN technology is becoming more and more mature, the application is then becoming more and more extensive, the campus network will grow rapidly on wireless LAN applications especially the research and higher education institutions on the wireless LAN demand is increasing with wireless LAN will have a very broad market development space. GIS business circle analysis model is to determine business enterprise location or expand their existing business outlets of information necessary to say on the map by G1S visual function of the model. This paper makes the combination of the mentioned items that will then and later influence the performance of the model.
文摘针对现有的双局域网(LAN)太赫兹无线局域网(Dual-LAN THz WLAN)相关介质访问控制(MAC)协议中存在的某些节点会在多个超帧内重复发送相同的信道时隙请求帧以申请时隙资源以及网络运行的一些时段存在空闲时隙等问题,提出一种基于自发数据传输的高效MAC协议——SDTE-MAC(high-Efficiency MAC protocol based on Spontaneous Data Transmission)。SDTE-MAC通过让各节点都维护一张或多张时间单元链表,使各节点与其余节点在网络运行时间上达到同步,从而获悉各节点应该在信道空闲时隙的什么位置开始发送数据帧,优化了传统的信道时隙分配和信道剩余时隙再分配的流程,提高了网络吞吐量和信道时隙利用率,降低了数据时延,能够进一步提升双LAN太赫兹无线局域网的性能。仿真结果表明,网络饱和时,相较于AHT-MAC(Adaptive High Throughout multi-pan MAC protocol)中的N-CTAP(Normal Channel Time Allocation Period)时段时隙资源分配新机制以及自适应缩短超帧时段机制,SDTE-MAC的MAC层吞吐量提升了9.2%,信道时隙利用率提升了10.9%,数据时延降低了22.2%。
基金supported by the National Natural Science Foundation of China(61571162)the Major National Science and Technology Project(2014ZX03004003-005)
文摘With the rapid development of wireless local area network (WLAN) technology, an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online calibration effort to overcome signal time-varying. A novel fingerprint positioning algorithm, known as the adaptive radio map with updated method based on hidden Markov model (HMM), is proposed. It is shown that by using a collection of user traces that can be cheaply obtained, the proposed algorithm can take advantage of these data to update the labeled calibration data to further improve the position estimation accuracy. This algorithm is a combination of machine learning, information gain theory and fingerprinting. By collecting data and testing the algorithm in a realistic indoor WLAN environment, the experiment results indicate that, compared with the widely used K nearest neighbor algorithm, the proposed algorithm can improve the positioning accuracy while greatly reduce the calibration effort.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
基金The manuscript APC is supported by the grant name(UMS No.DFK2005)“Smart Vertical farming Technology for Temperate vegetable cultivation in Sabah:practising smart automation system using IR and AI technology in agriculture 4.0”.
文摘IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.
文摘随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针对这些问题,提出一种基于虚拟局域网(Virtual Local Area Network,VLAN)的多信道卫星通信地面系统的设计方法。该方法充分利用网络划分VLAN技术的隔离性和安全性特征,结合多信道通信技术使用多个信道同时传输业务的特征,提升特征维度,实现高效、可靠的多信道卫星通信,具有易于硬件实现的特点,提高网络通信的吞吐量。