Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills ...1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].展开更多
Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of ...Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.展开更多
Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current ...Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.展开更多
The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative ...The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an H...[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an HLB solid-phase extraction column was activated, and a water sample, which was adjusted with phosphoric acid to a pH of (2±0.5) and added with 500 mg of disodium EDTA, was loaded, and 5 ml of water and 20% methanol water was added for washing. Next, 10 ml of elution solution was added for elution, and the collected eluate was evaporated under reduced pressure at 40 ℃ to near dryness, and 1 ml of reconstitution solution was added to a constant volume. An ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 2.6 μm) chromatographic column was adopted for LC separation by gradient elution with 0.1% formic acid aqueous solution-acetonitrile as the mobile phase. For MS detection, the MRM mode was adopted for collection, and the positive and negative ion modes were switched for simultaneous determination, and the internal standard method was used for quantification. [Results] The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance. The limits of detection ranged from 0.15 to 3.00 ng/L, and the limits of quantitation were between 0.80 and 10.00 ng/L, and the recoveries ranged from 77.9% to 104.85%. [Conclusions] The method has high sensitivity, good accuracy and strong practical value.展开更多
[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyze...[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.展开更多
Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and sc...Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and scavenger raptors. This study aimed to assess bird diversity and abundance in and around Tayba Al Hasanab Landfill, Khartoum. A bird census was conducted using block counts in January 2021. A questionnaire complemented field observations, and interviews were conducted with landfill authorities and waste collectors to gather information on bird availability, numbers, and diversity. During the block counts, 23 bird species were recorded inside and around the landfill. These species directly relied on food resources available at and around the landfill, belonging to 8 orders and 11 families. The four most abundant species foraging at the landfill were Sparrow House (Passer domesticus) with 97 individuals, Black kite (Milvus migrans) with 67 individuals, cattle egret (Bubulcus ibis) with 42 individuals, and Laughing Dove (Spilopelia senegalensis) with 36 individuals. This suggests that these species are the primary exploiters of food resources at the landfill. The results indicate that all species are considered least concerned except the Egyptian Vulture (Neophron percnopterus), which is classified as endangered. Most of the interviewed individuals reported seeing birds in the study area. The study recorded instances of dead birds, such as a white stork colliding and being electrocuted with a transition line observed at different sites along transmission lines near the landfill. Surveys around Tayba landfill need to be conducted to identify deadly power lines for replacement or implement possible mitigation measures on power lines running parallel and close to the Tayba landfills. The avian community foraging at the landfill displayed fluctuations in abundance and interspecific interactions across seasons. Given that the substantial influx of birds to landfills can pose various environmental challenges in urban settings, this study underscores the significance of examining the seasonal dynamics of bird communities concerning the location and management of landfills.展开更多
Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical ...Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical energy production and potential carbon credits from avoided CH4 emissions) from its proper management in a municipal solid waste landfill located in Ouagadougou, Burkina Faso. The modeling was carried out using two first-order decay (FOD) models (LandGEM V3.02 and SWANA) using parameters evaluated on the basis of the characteristics of the waste admitted to the landfill and weather data for the site. At the same time, production data have been collected since 2016 in order to compare them with the model results. The results obtained from these models were compared to experimental one. For the simulation of methane production, the SWANA model showed better consistency with experimental data, with a coefficient of determination (R²) of 0.59 compared with the LandGEM model, which obtained a coefficient of 0.006. Thus, despite the low correlation values linked to the poor consistency of experimental data, the SWANA model models methane production much better than the LandGEM model. Thus, despite the low correlation values linked to the poor consistency of the experimental data, the SWANA model models methane production much better than the LandGEM V3.02 model. It was noted that the poor consistency of the experimental data justifies these low coefficients, and that they can be improved in the future thanks to ongoing in situ measurements. According to the SWANA model prediction, in 27 years of operation a biogas plant with 33% electrical efficiency using biogas from the Polesgo landfill would avoid 1,340 GgCO2e. Also, the evaluation of revenues due to electricity and carbon credit gave a total revenue derived from methane production of US$27.38 million at a cost of US$10.5/tonne CO2e.展开更多
This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis...This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30- 50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53q4 on w/w basis for the wastes AI, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353,215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90e/L Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.展开更多
Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systemat...Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.展开更多
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ...An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.展开更多
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str...When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.展开更多
Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In ...Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In this regard, it is necessary to investigate whether coke deposition originates from CH_(4) or volatile organic compounds present in LFG, and the influence of coke deposition on catalytic performance. Herein,we evaluate the LFG deoxygen on Pt/γ-Al_(2)O_(3) catalyst in simulated LFG(CH_(4), CO_(2), O_(2), N_(2)) and its co-feed with representative volatile organic compounds, ethylbenzene, toluene, benzene and cyclohexane. The results show that the coking of the catalyst is originated from volatile organic compounds rather than CH_(4). The Pt/γ-Al_(2)O_(3) catalyst does not deactivate during LFG deoxygen process, even significant amount of coke deposited, up to 18.15%(mass). Characterization analyses reveal that although coke deposition overall covers the catalyst surface, resulting in mesopores blockage and a reduced number of accessible Pt sites, however, the coke formed, H-rich carbonaceous components, behaves as counterpart for O_(2) elimination. Besides, the coke deposited is mainly filamentous. Thus, coke formation has little negative effect on the overall catalytic performance of Pt/γ-Al_(2)O_(3) catalyst ultimately. The results obtained in this work are helpful for the rational design of robust Pt based catalysts for LFG deoxygen without undue attention to their coking properties, and also favor the innovation of more attractive purification scheme configurations.展开更多
Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Am...Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.展开更多
An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratifica...An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratification which could constitute a protective screen of the aquifer of the Continental Terminal of Abidjan against the migration of leachate. Electrical surveys (SE) carried out according to the Schlumberger configuration showed that the stratigraphy of the area is composed of three to four geoelectric layers depending on the SE positions. The correlation with the lithology of two piezometric boreholes carried out indicates that the lithology of the study area is dominated by clayey sand, sand, sandy clay and clay. The average thickness of accumulated waste varies between 30 and 40 m. The virtual absence of a continuous layer of clay under the waste exposes the Continental Terminal aquifer to contamination by leachate from waste accumulated over several decades in the Akouedo area.展开更多
在当今时代,跟上潮流比以往任何时候都容易,所以我们家里难免会堆积很多旧衣服。那么,我们该怎么处理这些旧衣服呢?1 Need to get rid of old clothes?Youre not alone:With fast fashion,its easier than ever to buy into trends.But ...在当今时代,跟上潮流比以往任何时候都容易,所以我们家里难免会堆积很多旧衣服。那么,我们该怎么处理这些旧衣服呢?1 Need to get rid of old clothes?Youre not alone:With fast fashion,its easier than ever to buy into trends.But cheap clothes arent made to last and that excess often ends up in a long chain of carbonand laborintensive reselling and recycling,if not directly into a landfill.展开更多
Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environme...Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environmental,technical,economic,and legal issues.This study aims to map the optimal sites that were environmentally suitable for locating a landfill site in Butuan City,Philippines.With reference to the policy requirements from DENR Section I,Landfill Site Identification Criteria and Screening Guidelines of National Solid Waste Management Commission,the integration of a Geographic Information System(GIS)model builder and Analytical Hierarchy Process(AHP)has been used in this study to address the aforementioned challenges related to the landfill site suitability analysis.Based on the generated sanitary landfill suitability map,results showed that Barangay Tungao(1131.42967 ha)and Florida(518.48 ha)were able to meet and consider the three(3)main components,namely economic,environmental,and physical criteria,and are highly suitable as landfill site locations in Butuan City.It is recommended that there will conduct a geotechnical evaluation,involving rigorous geological and hydrogeological assessment employing a combination of site investigation and laboratory techniques.In addition,additional specific social,ecological,climatic,and economic factors need to be considered(i.e.including impact on humans,flora,fauna,soil,water,air,climate,and landscape).展开更多
To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer ...To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer program Pollute V6.3, the effective diffusion coefficients of K^+ of the soils were back-calculated from the diffusion tests. It is found that the Ariake clay has a larger effective diffusion coefficient than the Akaboku soil, indicating that the Ariake clay may provide a better diffusion barrier. A comparison of the effective diffusion coefficients between the single-salt solution condition and the multi-salt solution condition indicates that soils have higher effective diffusion coefficients under the former condition. It is suggested to use miscible solution close to landfill leachates for determining effective diffusion coefficients of specified chemical species for a practical design.展开更多
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.
基金Nanyang Technological University(NTU),Singapore,for providing research scholarships for this study.The authors thank the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].
基金the financial sponsorship from the National Natural Science Foundation of China(Grant No.U20A20320)the area of excellence project(Grant No.AoE/E-603/18)provided by the Research Grants Council of HKSARShenzhen Science and Technology Program(Grant No.KCXFZ20211020163816023).
文摘Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.
基金supported by the National Key Research and Development Program of China(2023YFC3711600)the National Natural Science Foundation of China(22076045 and 22376066)the Shanghai Talent Development Funding,and the Shanghai Youth Talent Support Program.
文摘Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.
基金supported by the Beijing Natural Science Foundation (8222040)Key Program of National Natural Science Foundation of China (52131004)+4 种基金Young Elite Scientists Sponsorship Program by China association for science and technology (CAST,YESS20220508)Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology (BAST,BYESS2023183)Innovation and Entrepreneurship Leading Team Project in Guangzhou (CYLJTD-201607)Key Research and Developmental Program of Shandong Province (2020CXGC011404)Cultivating Fund of Faculty of Environment and Life,Beijing University of Technology (PY202302).
文摘The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
基金Supported by Tongren Science and Technology Planning Project(TSKY[2022]42)Science Planning Project of Department of Education of Guizhou Province(2023B111)。
文摘[Objectives] An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous determination of 26 antibiotics in the water around landfills. [Methods] After an HLB solid-phase extraction column was activated, and a water sample, which was adjusted with phosphoric acid to a pH of (2±0.5) and added with 500 mg of disodium EDTA, was loaded, and 5 ml of water and 20% methanol water was added for washing. Next, 10 ml of elution solution was added for elution, and the collected eluate was evaporated under reduced pressure at 40 ℃ to near dryness, and 1 ml of reconstitution solution was added to a constant volume. An ACQUITY UPLC BEH C18 (100 mm×2.1 mm, 2.6 μm) chromatographic column was adopted for LC separation by gradient elution with 0.1% formic acid aqueous solution-acetonitrile as the mobile phase. For MS detection, the MRM mode was adopted for collection, and the positive and negative ion modes were switched for simultaneous determination, and the internal standard method was used for quantification. [Results] The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance. The limits of detection ranged from 0.15 to 3.00 ng/L, and the limits of quantitation were between 0.80 and 10.00 ng/L, and the recoveries ranged from 77.9% to 104.85%. [Conclusions] The method has high sensitivity, good accuracy and strong practical value.
基金Supported by Tongren Science and Technology Planning Project (TSKY[2022]42)Education Science Planning Project of Department of Education of Guizhou Province (2023B111).
文摘[Objectives]This study was conducted to explore the occurrence levels of endocrine disruptors(EDCs)in rural areas around a county landfill in Tongren City.[Methods]The water around the landfill was sampled and analyzed.A solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry(SPE-UPLC-MS/MS)method was established for the determination of 27 EDCs.After the HLB solid-phase extraction column was activated,a water sample,which was adjusted with phosphoric acid to a pH of 2(±0.5)and added with 500 mg of disodium EDTA,was loaded,and 5 ml of water and 20%methanol water was added for washing.Next,10 ml of elution solution was added for elution,and the collected eluate was evaporated under reduced pressure at 40℃to near dryness,and 1 ml of reconstitution solution was added to a constant volume.An ACQUITY UPLC BEH C18(100×2.1 mm,2.6μm)chromatographic column was adopted for LC separation by gradient elution with pure water solution-acetonitrile as the mobile phase.For MS detection,the MRM mode was adopted for collection,and the positive and negative ion modes were switched for simultaneous determination,and the internal standard method was used for quantification.[Results]The correlation coefficient R2 was greater than 0.99 in the linear range of each target substance.The limits of quantitation in the method were between 0.05 and 2.00 ng/L,and the recoveries ranged from 75.3%to 105.7%.[Conclusions]The method has high sensitivity,good accuracy and strong practical value.
文摘Managed open landfill sites can serve as crucial feeding grounds for birds. Studies have demonstrated that garbage dumps offer favorable feeding habitats for various trophic generalist species, including storks and scavenger raptors. This study aimed to assess bird diversity and abundance in and around Tayba Al Hasanab Landfill, Khartoum. A bird census was conducted using block counts in January 2021. A questionnaire complemented field observations, and interviews were conducted with landfill authorities and waste collectors to gather information on bird availability, numbers, and diversity. During the block counts, 23 bird species were recorded inside and around the landfill. These species directly relied on food resources available at and around the landfill, belonging to 8 orders and 11 families. The four most abundant species foraging at the landfill were Sparrow House (Passer domesticus) with 97 individuals, Black kite (Milvus migrans) with 67 individuals, cattle egret (Bubulcus ibis) with 42 individuals, and Laughing Dove (Spilopelia senegalensis) with 36 individuals. This suggests that these species are the primary exploiters of food resources at the landfill. The results indicate that all species are considered least concerned except the Egyptian Vulture (Neophron percnopterus), which is classified as endangered. Most of the interviewed individuals reported seeing birds in the study area. The study recorded instances of dead birds, such as a white stork colliding and being electrocuted with a transition line observed at different sites along transmission lines near the landfill. Surveys around Tayba landfill need to be conducted to identify deadly power lines for replacement or implement possible mitigation measures on power lines running parallel and close to the Tayba landfills. The avian community foraging at the landfill displayed fluctuations in abundance and interspecific interactions across seasons. Given that the substantial influx of birds to landfills can pose various environmental challenges in urban settings, this study underscores the significance of examining the seasonal dynamics of bird communities concerning the location and management of landfills.
文摘Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical energy production and potential carbon credits from avoided CH4 emissions) from its proper management in a municipal solid waste landfill located in Ouagadougou, Burkina Faso. The modeling was carried out using two first-order decay (FOD) models (LandGEM V3.02 and SWANA) using parameters evaluated on the basis of the characteristics of the waste admitted to the landfill and weather data for the site. At the same time, production data have been collected since 2016 in order to compare them with the model results. The results obtained from these models were compared to experimental one. For the simulation of methane production, the SWANA model showed better consistency with experimental data, with a coefficient of determination (R²) of 0.59 compared with the LandGEM model, which obtained a coefficient of 0.006. Thus, despite the low correlation values linked to the poor consistency of experimental data, the SWANA model models methane production much better than the LandGEM model. Thus, despite the low correlation values linked to the poor consistency of the experimental data, the SWANA model models methane production much better than the LandGEM V3.02 model. It was noted that the poor consistency of the experimental data justifies these low coefficients, and that they can be improved in the future thanks to ongoing in situ measurements. According to the SWANA model prediction, in 27 years of operation a biogas plant with 33% electrical efficiency using biogas from the Polesgo landfill would avoid 1,340 GgCO2e. Also, the evaluation of revenues due to electricity and carbon credit gave a total revenue derived from methane production of US$27.38 million at a cost of US$10.5/tonne CO2e.
文摘This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30- 50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53q4 on w/w basis for the wastes AI, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353,215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90e/L Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.
基金the financial sponsorship from the National Natural Science Foundation of China(Grant Nos.U20A20320 and 51778166)the funding from the State Key Laboratory of Subtropical Building Science in South China University of Technology(Grant No.2022ZC01).
文摘Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.
基金supported by the National Key R&D Program(No.2018YFC1504901)and by the Natural Science Foundation of China(Grant No.42071264)supported by the Geological Hazard Prevention Project in The Three Gorges Reservoirs(Grant No.0001212015CC60005).
文摘An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901)。
文摘When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.
基金the financial supports from the National Natural Science Foundation of China (22076077, 21577060)Jiangsu Science and Technology Department (BK20191256)Analysis & Test Fund of Nanjing University。
文摘Catalytic oxidation of CH_(4) has been proved to be an attractive option for landfill gas(LFG) upgrading.However, coking of catalysts in catalytic LFG deoxygen has been clearly observed in industrial applications. In this regard, it is necessary to investigate whether coke deposition originates from CH_(4) or volatile organic compounds present in LFG, and the influence of coke deposition on catalytic performance. Herein,we evaluate the LFG deoxygen on Pt/γ-Al_(2)O_(3) catalyst in simulated LFG(CH_(4), CO_(2), O_(2), N_(2)) and its co-feed with representative volatile organic compounds, ethylbenzene, toluene, benzene and cyclohexane. The results show that the coking of the catalyst is originated from volatile organic compounds rather than CH_(4). The Pt/γ-Al_(2)O_(3) catalyst does not deactivate during LFG deoxygen process, even significant amount of coke deposited, up to 18.15%(mass). Characterization analyses reveal that although coke deposition overall covers the catalyst surface, resulting in mesopores blockage and a reduced number of accessible Pt sites, however, the coke formed, H-rich carbonaceous components, behaves as counterpart for O_(2) elimination. Besides, the coke deposited is mainly filamentous. Thus, coke formation has little negative effect on the overall catalytic performance of Pt/γ-Al_(2)O_(3) catalyst ultimately. The results obtained in this work are helpful for the rational design of robust Pt based catalysts for LFG deoxygen without undue attention to their coking properties, and also favor the innovation of more attractive purification scheme configurations.
文摘Population growth combined with the rising standard of living of people around the world is the reason for the ever-increasing production of waste which management is costing states a lot of money for its disposal. Among available waste treatment techniques, landfill is one of the most promoted waste management techniques with the emergence of the bioreactor concept. However, the control of biodegradation parameters in order to accelerate waste stabilization is an important issue. For environmental and economic reasons, the technique of leachate recirculation by injection into the waste is increasingly used to improve the degradation of landfilled waste. The injection of leachate is possible using vertical boreholes, horizontal pipes, infiltration ponds or a combination of these. Indeed, moisture is the main factor in waste degradation and biogas production. The migration of leachate to the bottom of the landfill creates low moisture in the upper areas of the landfill reducing the growth of microbial populations. This results in low or no biogas production. The main objective of the present work is to develop a numerical model of leachate recirculation by injection into the waste to rewet the waste and restart biological activity. The analysis of the results shows that the diffusion of the wet front increases with time and depth. The lateral widening of the wet front is slow in relation to the progression of the wet front towards the bottom of the waste cell. This indicates the predominance of gravity effects over diffusion phenomena. The results reveal that the distributed re-injection is the best mode of leachate recirculation because the moisture distribution on the whole waste mass is totally satisfactory and the biogas generation is more important. Leachate recirculation campaigns should be done periodically to rewet the waste, boost microbial activity and hope for a quicker stabilization of the landfill.
文摘An electrical resistivity survey was carried out on the household and industrial waste disposal site (landfill) of Akouédo (Central Abidjan) with a view to searching for a possible layer of clay in the stratification which could constitute a protective screen of the aquifer of the Continental Terminal of Abidjan against the migration of leachate. Electrical surveys (SE) carried out according to the Schlumberger configuration showed that the stratigraphy of the area is composed of three to four geoelectric layers depending on the SE positions. The correlation with the lithology of two piezometric boreholes carried out indicates that the lithology of the study area is dominated by clayey sand, sand, sandy clay and clay. The average thickness of accumulated waste varies between 30 and 40 m. The virtual absence of a continuous layer of clay under the waste exposes the Continental Terminal aquifer to contamination by leachate from waste accumulated over several decades in the Akouedo area.
文摘在当今时代,跟上潮流比以往任何时候都容易,所以我们家里难免会堆积很多旧衣服。那么,我们该怎么处理这些旧衣服呢?1 Need to get rid of old clothes?Youre not alone:With fast fashion,its easier than ever to buy into trends.But cheap clothes arent made to last and that excess often ends up in a long chain of carbonand laborintensive reselling and recycling,if not directly into a landfill.
文摘Landfilling is one of the most effective and responsible ways to dispose of municipal solid waste(MSW).Identifying landfill sites,however,is a challenging and complex undertaking because it depends on social,environmental,technical,economic,and legal issues.This study aims to map the optimal sites that were environmentally suitable for locating a landfill site in Butuan City,Philippines.With reference to the policy requirements from DENR Section I,Landfill Site Identification Criteria and Screening Guidelines of National Solid Waste Management Commission,the integration of a Geographic Information System(GIS)model builder and Analytical Hierarchy Process(AHP)has been used in this study to address the aforementioned challenges related to the landfill site suitability analysis.Based on the generated sanitary landfill suitability map,results showed that Barangay Tungao(1131.42967 ha)and Florida(518.48 ha)were able to meet and consider the three(3)main components,namely economic,environmental,and physical criteria,and are highly suitable as landfill site locations in Butuan City.It is recommended that there will conduct a geotechnical evaluation,involving rigorous geological and hydrogeological assessment employing a combination of site investigation and laboratory techniques.In addition,additional specific social,ecological,climatic,and economic factors need to be considered(i.e.including impact on humans,flora,fauna,soil,water,air,climate,and landscape).
文摘To investigate the potential use of two Japanese regional clayey soils, named Ariake clay and Akaboku soil, as soil barrier materials, a series of laboratory diffusion tests are presented. Using an available computer program Pollute V6.3, the effective diffusion coefficients of K^+ of the soils were back-calculated from the diffusion tests. It is found that the Ariake clay has a larger effective diffusion coefficient than the Akaboku soil, indicating that the Ariake clay may provide a better diffusion barrier. A comparison of the effective diffusion coefficients between the single-salt solution condition and the multi-salt solution condition indicates that soils have higher effective diffusion coefficients under the former condition. It is suggested to use miscible solution close to landfill leachates for determining effective diffusion coefficients of specified chemical species for a practical design.