期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
川西高山森林生态系统演替动态的长期模拟 被引量:2
1
作者 林阳 李媛媛 +3 位作者 余欣然 韩茂云 余燕 肖江涛 《应用与环境生物学报》 CAS CSCD 北大核心 2023年第4期891-897,共7页
川西高山森林地处青藏高原东南边缘,是西南林区的重要组成部分,对维持我国西部区域生态安全和构成长江上游生态屏障具有十分重要的作用.为了解长江上游川西高山森林演替趋势,以地处岷江上游的阿坝藏族羌族自治州茂县为研究区,利用森林... 川西高山森林地处青藏高原东南边缘,是西南林区的重要组成部分,对维持我国西部区域生态安全和构成长江上游生态屏障具有十分重要的作用.为了解长江上游川西高山森林演替趋势,以地处岷江上游的阿坝藏族羌族自治州茂县为研究区,利用森林景观模型(LANDIS-II)对川西高山森林未来300年森林演替进行模拟,分别对生物量(典型树种、生态区和研究区)、多样性(树种和年龄)进行分析.研究结果表明:(1)研究区生物量呈“W”字形变化,在模拟短期的100年内生物量由180 t/hm^(2)增加到了220 t/hm^(2),模拟中期的生物量先下降后上升,到模拟后期生物量逐渐稳定在225 t/hm^(2);(2)在树种和生态区尺度上,不同生态区和树种的生物量大小和变化情况差距较大;(3)在香农指数方面,随着演替的推进,树种多样性和年龄级多样性逐渐上升,树种香农指数由最初的2.06上升到2.71,年龄级香农指数由最初的1.76上升到3.32,演替末期两者趋于稳定;(4)在龄组构成方面,演替初期,群落多由幼中龄林和近熟林构成,中期多以过熟林为主,到演替末期,群落各龄组构成趋于稳定.总之,川西高山森林的生物量和多样性在自然演替下需要较长的时间(200年)才能恢复到稳定的状态.本研究结果可为川西乃至长江上游生态屏障制定合理的森林管理策略和应对未来气候变化提供重要参考依据.(图10表1参37) 展开更多
关键词 森林演替 landis-ii 川西高山森林 生物量 多样性
原文传递
Extrapolating plot-scale CO_(2) and ozone enrichment experimental results to novel conditions and scales using mechanistic modeling
2
作者 Eric J.Gustafson Mark E.Kubiske +2 位作者 Brian R.Miranda Yasutomo Hoshika Elena Paoletti 《Ecological Processes》 SCIE EI 2018年第1期348-367,共20页
Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the fi... Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the field in northern Wisconsin,USA.Uncertainty remains about how these short-term plotlevel responses might play out over broader temporal and spatial scales where climate change,competition,succession,and disturbances interact with tree-level responses.In this study,we used a new physiologybased approach(PnET-Succession v3.1)within the forest landscape model LANDIS-II to extrapolate the FACE results to broader temporal scales(and ultimately to landscape scale)by mechanistically accounting for the globally changing drivers of temperature,precipitation,CO_(2),and ozone.We added novel algorithms to the model to mechanistically simulate the effects of ozone on photosynthesis through ozone-induced impairment of stomatal control(i.e.,stomatal sluggishness)and damage of photosynthetic capacity at the chloroplast level.Results:We calibrated the model to empirical observations of competitive interactions on the elevated CO_(2) and O_(3) plots of the Aspen-FACE experiment and successfully validated it on the combined factor plots.We used the validated model to extend the Aspen-FACE experiment for 80 years.When only aspen clones competed,we found that clone 271 always dominated,although the ozone-tolerant clone was co-dominant when ozone was present.Under all treatments,when aspen clone 216 and birch competed,birch was always dominant or co-dominant,and when clone 216 and maple competed,clone 216 was dominant,although maple was able to grow steadily because of its shade tolerance.We also predicted long-term competitive outcomes for novel assemblages of taxa under each treatment and discovered that future composition and dominant taxa depend on treatment,and that short-term trends do not always persist in the long term.Conclusions:We identified the strengths and weaknesses of PnET-Succession v3.1 and conclude that it can generate potentially robust predictions of the effects of elevated CO_(2) and ozone at landscape scales because of its mechanistically motivated algorithms.These capabilities can be used to project forest dynamics under anticipated future conditions that have no historical analog with which to parameterize less mechanistic models. 展开更多
关键词 Scaling Global change Elevated CO_(2) Ozone pollution Aspen-FACE Forest composition Carbon dynamics Forest landscape modeling landis-ii PnET-succession
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部