期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
神经网络全局势函数在多相催化中的应用 被引量:4
1
作者 马思聪 刘智攀 《化工进展》 EI CAS CSCD 北大核心 2020年第9期3433-3443,共11页
当今的多相催化研究需要新的技术和方法从原子尺度上表征活性中心结构和反应中间体。本文作者课题组近期开发了理论模拟新技术来探索催化剂活性位点结构,即基于神经网络势函数的大规模原子模拟(LASP)软件中实现的全局神经网络势函数计... 当今的多相催化研究需要新的技术和方法从原子尺度上表征活性中心结构和反应中间体。本文作者课题组近期开发了理论模拟新技术来探索催化剂活性位点结构,即基于神经网络势函数的大规模原子模拟(LASP)软件中实现的全局神经网络势函数计算方法。本文介绍了该方法可以显著降低催化体系的计算代价,而维持与密度泛函理论同一级别的计算精度,从而解决多相催化中的许多复杂问题。本文对神经网络势函数方法的实现细节和目前已实现的应用场景进行了详细介绍。神经网络势函数可以用来预测材料晶体结构,理解高压氢化条件下TiO2表面的结构演化和确定三元氧化物ZnCrO晶相中合成气制甲醇活性位点。最后文章分析了神经网络势函数的局限性和今后可能的三个研究方向,即材料性质预测、多元素体系神经网络势函数构造和化学反应拟合。 展开更多
关键词 机器学习 神经网络 密度泛函理论 随机势能面行走 lasp软件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部