期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于LAStools类库的点云去噪降负载压力方法
1
作者 饶云 《国土资源导刊》 2020年第4期70-75,共6页
由于海量的点云数据信息,会造成专业处理软件在读取、加工数据时产生巨大的计算量,基于Lidar点云在地面回波特点与规律,利用开源LAStools类库函数首先剥离出点云数据中部分非地面点数据,极大减轻了Lidar点云处理软件的程序负载压力,再... 由于海量的点云数据信息,会造成专业处理软件在读取、加工数据时产生巨大的计算量,基于Lidar点云在地面回波特点与规律,利用开源LAStools类库函数首先剥离出点云数据中部分非地面点数据,极大减轻了Lidar点云处理软件的程序负载压力,再结合高斯滤波法,去除噪点数据,提高了整体作业效率。 展开更多
关键词 lastools 剥离 负载压力 效率
下载PDF
A general-purpose framework for parallel processing of large-scale LiDAR data
2
作者 Zhenlong Li Michael E.Hodgson Wenwen Li 《International Journal of Digital Earth》 SCIE EI 2018年第1期26-47,共22页
Light detection and ranging(LiDAR)data are essential for scientific discoveries such as Earth and ecological sciences,environmental applications,and responding to natural disasters.While collecting LiDAR data over lar... Light detection and ranging(LiDAR)data are essential for scientific discoveries such as Earth and ecological sciences,environmental applications,and responding to natural disasters.While collecting LiDAR data over large areas is quite possible the subsequent processing steps typically involve large computational demands.Efficiently storing,managing,and processing LiDAR data are the prerequisite steps for enabling these LiDAR-based applications.However,handling LiDAR data poses grand geoprocessing challenges due to data and computational intensity.To tackle such challenges,we developed a general-purpose scalable framework coupled with a sophisticated data decomposition and parallelization strategy to efficiently handle‘big’LiDAR data collections.The contributions of this research were(1)a tile-based spatial index to manage big LiDAR data in the scalable and fault-tolerable Hadoop distributed file system,(2)two spatial decomposition techniques to enable efficient parallelization of different types of LiDAR processing tasks,and(3)by coupling existing LiDAR processing tools with Hadoop,a variety of LiDAR data processing tasks can be conducted in parallel in a highly scalable distributed computing environment using an online geoprocessing application.A proof-of-concept prototype is presented here to demonstrate the feasibility,performance,and scalability of the proposed framework. 展开更多
关键词 Big data online geoprocessing Hadoop MapReduce spatial decomposition lastools PARALLEL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部