期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Evaluation of Mechanical Properties of Cross-Laminated Timber with Different Lay-ups Using Japanese Larch 被引量:1
1
作者 Yingchun Gong Fenglu Liu +3 位作者 Zhaopeng Tian Guofang Wu Haiqing Ren Cheng Guan 《Journal of Renewable Materials》 SCIE 2019年第10期941-956,共16页
Japanese larch is one of the main plantation tree species in China.A lack of engineered wood products made by Japanese larch,however,limits its application in wood stnuctures.In this study,based on optimum process par... Japanese larch is one of the main plantation tree species in China.A lack of engineered wood products made by Japanese larch,however,limits its application in wood stnuctures.In this study,based on optimum process parameters,such as pressure(12 MPa),adhesive spread rate(200 g/m^(2))and adhesive(one-component polyurethane),the mechanical properties of Japanese larch-made cross-laminated timber(CLT)with different lay-ups were evaluated by means of the static method.Results of this study showed that variations in lay-ups significantly affected the mechanical properties of CLT.The strength and modulus of bending and parallel compression for CLT increased with the thickness of lumber,while that of bending,parallel compression and rolling shear all decreased with the number of layers.Thickness,layup orientation and the number of layers all had an impact on the strength of CLT.Failure modes obtained from numerical simulation were basically the same as those of experimental tests.There was also strong alignment between theoretical value and test value for effective bending stifness and shear stifness.Thus,the shear analogy method can be used to predict the mechanical properties of CLT effectively.This study proved great potential in using Japanese larch wood for manufacturing CLT due to its good mechanical properties. 展开更多
关键词 Cross-laminated timber mechanical properties lay-ups failure mode shear analogy
下载PDF
Effects of Lay-up Types of Out-of-autoclave Prepregs on Preparation Quality of L-shape Composite Laminates
2
作者 龚明 ZHANG Daijun +1 位作者 ZHANG Jiayang 陈祥宝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期629-635,共7页
Effects of layer quantities and stacking sequences on L-shape composite manufacturing qualities in using OOA(out-of-autoclave)prepregs were studied.The mechanisms of air evacuated in 5 kinds of lay-ups were revealed b... Effects of layer quantities and stacking sequences on L-shape composite manufacturing qualities in using OOA(out-of-autoclave)prepregs were studied.The mechanisms of air evacuated in 5 kinds of lay-ups were revealed by image analysis of cut surfaces and thickness measurements.Results show that air in OOA prepregs is evacuated in two ways.Most of the air is forced out of layers directly by vacuum before air accesses in prepregs closed.Very little entrapped air moves perpendicularly to outer layers under hydrostatic resin pressure.When a laminate contains less than 16 layers,voids can hardly be found in layers.When a laminate contains more than 16 layers,voids cannot be expelled completely during the window of vertical movement.As for stacking sequences,the synergetic effect of slip function and nest function determines the thickness and voids content of laminates.Results show that the average of single layer thickness of unidirectional layers is the lowest,and the average of single layer thickness of quasi-isotropic layers is the highest.The voids content of quasi isotropic is the highest,which is consistent with the theoretical analysis. 展开更多
关键词 OOA prepregs L-shape composite laminates lay-up type
下载PDF
Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge 被引量:7
3
作者 Yu YANG Zhigang WANG Shuaishuai LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期271-278,共8页
Morphing leading edge has great potential for noise abatement and aerodynamic efficiency improvement.The drooping effect is realized by bending of the flexible skin which encloses to form the leading edge.Since the fl... Morphing leading edge has great potential for noise abatement and aerodynamic efficiency improvement.The drooping effect is realized by bending of the flexible skin which encloses to form the leading edge.Since the flexible skin is often made of composite laminates of Glass Fiber Reinforced Plastics(GFRP),the lay-up sequences have become the determinant,which affects not only the morphing quality but also the manufacturing complexity.Two optimizing methods of layup sequences are comparatively studied.In the first method,the laminal quantities in 0,±45and 90vary independently,while in the second one,the concept of isotropic laminate unit[0/45/45/90]s is employed and the unit quantity is the unique variable.Final evaluation demonstrates that for both methods there is insignificant impact to the overall morphing quality;however,specific concern is equally necessary for these two methods to the tip of the leading edge where the skin is at its minimum thickness and bears the most severe bending deformation.In terms of computational efficiency and post-processing labor,the second method has better performance. 展开更多
关键词 Composite laminates Flexible skin Glass fiber reinforced plastics lay-up sequence Leading edge Morphing wing
原文传递
Effects of Hydrothermal Environment on the Deformation of the Thin Bamboo Bundle Veneer Laminated Composites
4
作者 Ge Wang Linbi Chen +2 位作者 Haiying Zhou Shanyu Han Fuming Chen 《Journal of Renewable Materials》 SCIE EI 2023年第3期1499-1511,共13页
To overcome warping in thin bamboo bundle veneer laminated composites(TBLC),their hydrothermal deformation characteristics were systematically investigated in this study.It was found that TBLCs accelerated the release... To overcome warping in thin bamboo bundle veneer laminated composites(TBLC),their hydrothermal deformation characteristics were systematically investigated in this study.It was found that TBLCs accelerated the release of internal stress in the thickness direction in a hydrothermal environment,which increased their warpage.TBLCs showed increased warpage in the width and diagonal directions upon increasing the temperature.The warpage of Type E increased by 155.88%and 66.67%in the width and diagonal directions,respectively,when the temperature increased from 25C to 100C.The symmetrical TBLC with cross-lay-up and odd layers displayed better hydrothermal stability.We revealed that the deformation of the TBLCs could be regulated under the synergistic effect of water and temperature.These results provide a scientific basis for improving the uniformity of bamboo bundle composite materials and for developing thin bamboo bundle fiber composite materials with designable structures and controllable performance. 展开更多
关键词 Thin bamboo bundle veneer laminated composites DEFORMATION hydrothermal environment lay-up structure
下载PDF
A THEORETICAL MODEL OF MATRIX CRACKING IN COMPOSITE LAMINATES UNDER THERMOMECHANICAL LOADING 被引量:1
5
作者 Herrmann K.P. 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第4期299-305,共7页
A theoretical approach is presented for analyzing the ply crackingin general symmetric lami- nates subjected to any combination ofin-plane mechanical loading and uniform temperature changes. Theequivalent constraint m... A theoretical approach is presented for analyzing the ply crackingin general symmetric lami- nates subjected to any combination ofin-plane mechanical loading and uniform temperature changes. Theequivalent constraint model proposed by the authors in a previouswork is used to account for the cracking in- teraction betweenlaminae in the laminates. By using a superposition schemce and thestress field solutions the energy release rate for a ply cracking isexplicitly as a function of stiffness reduction parameters of thelaminates. The ratio of mode Ⅰ to mode Ⅱ is introduced formconstruction of the fracture criterion. The effects of the laminateparameters and the crack spacing on the energy release rate and themode mixity are illustrated. Finally, the model is used to predictthe thermomechanical load for the first-ply-cracking. 展开更多
关键词 thermomechanical load intralaminar cracking general lay-ups and mixed mode
下载PDF
Composite materials for primary aircraft structures:from development phase to high volume production rate 被引量:2
6
作者 LI Helen FIORE Lucien JIANG Zhen 《民用飞机设计与研究》 2020年第1期125-128,共4页
From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to a... From 1980’s decade,the introduction of carbon composite materials in structural applications has been consistently increased in the successive generations of civil aircraft from Single Aisle to Middle-long Range to achieve a culminant point with more than 50%in structure weight in recent commercial civil aircraft.This evolution,done through successive iterations,has been possible by combining in the same time the improvement of intrinsic composite material performances and its transformation into prepreg production technologies together with the development of new manufacturing process for material lay-up automation at composite shop-floor manufacturer of aircraft composite parts.New challenges are still coming to continuously develop materials and technologies in order to pursue the production more cost-effective composite parts.Associated to higher aircraft production rate for single aisle,new challenges may force material and aircraft designers and producers to furthermore drive new products and processes introduction and new ways of transformation within in next decade of composite aircraft designs.We propose to illustrate these trends using past and recent developments and our return of experience from Hexcel on Civil Aircraft programs. 展开更多
关键词 composite materials structural applications PREPREG technology automatic lay-up PROCESSES high production VOLUME rate
下载PDF
Influence of the Process of Worker on the Mechanical Properties of Carbon Fiber Reinforced Plastic Molded by Autoclave
7
作者 于利超 内田敏一 +6 位作者 滨田泰以 阳玉球 许晶 谢茜 王永利 董玉莹 陈丽丽 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期665-669,共5页
The present study aims to investigate the difference of the operation process and the significant mechanical properties between expert workers and beginner workers clearly. The influence of the performance of the carb... The present study aims to investigate the difference of the operation process and the significant mechanical properties between expert workers and beginner workers clearly. The influence of the performance of the carbon fiber reinforced plastic (CFRP) molds made by subjects with difference skill level was discussed. Subjects were allowed to choose their process and molding tools. Subject A had 13 years,and subject B had 1 year of professional experience.The time spent usage of tools and process was recorded by a video camera used for analysis and comparison. Mechanical properties assessed in this study include tensile,compressive and Izod impact properties. The working time analysis shows that subject A needs short time for each process. On the other hand,subject B takes twice time to work for each process compared with subject A. From the surface and cross-section observation, it was found that the molding made by subject B had wrinkles all over and the disorderly inter-layer direction; on the contrary,the wrinkles on the molding surface of subject A are barely,and the inter-layer direction of which are more orderly. The results of tensile and Izod impact tests show that the surface winkles have little influence on the mechanical properties of the molding. According to the compression test and failure structure analysis in edge corner part,it was found that it had a great influence on the compression mechanical properties of the sample belonging to different subjects with different experience. 展开更多
关键词 autoclave molding hand lay-up STACKING cross-section analysis mechanical properties
下载PDF
Effects of Processing Methods on Mechanical Properties of Alkali Treated Bagasse Fibre Reinforced Epoxy Composite
8
作者 Geoffrey Bem Nyior Ekene Chukwuka Mgbeahuru 《Journal of Minerals and Materials Characterization and Engineering》 2018年第3期345-355,共11页
Effects of the processing methods on the mechanical properties of treated bagasse fibre reinforced epoxy composite were evaluated. The composite materials were processed by employing hand lay-up and compression mouldi... Effects of the processing methods on the mechanical properties of treated bagasse fibre reinforced epoxy composite were evaluated. The composite materials were processed by employing hand lay-up and compression moulding methods and fibres were treated with NaOH solution. The composite samples were subjected to tensile, flexural and impact tests. Based on the findings, compression moulding method produced better mechanical properties compared to the composites manufactured by hand lay-up method. The results showed that the tensile strength and Young’s modulus of the samples produced by compression moulding method increased by 77 percent and 47 percent respectively (at optimal fibre loading) compared to those produced by the hand lay-up method. The results also showed noticeable improvements in the impact strength of the material produced by compression moulding method, with impact strength of 11.5 kJ/m2 against the samples produced by hand lay-up method, with impact strength of 7 kJ/m2. 展开更多
关键词 Hand lay-up METHOD Compression MOULDING METHOD ALKALI BAGASSE FIBRE and Epoxy
下载PDF
Assessing Mechanical Properties of Natural Fibre Reinforced Composites for Engineering Applications
9
作者 O. D. Samuel S. Agbo T. A. Adekanye 《Journal of Minerals and Materials Characterization and Engineering》 2012年第8期780-784,共5页
Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabrica... Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabricated by the hand lay-up process (30:70 fibre and matrix ratio by weight) and the properties evaluated using the INSTRON material testing system. The mechanical properties were tested and showed that glass laminate has the maximum tensile strength of 63 MPa, bending strength of 0.5 MPa, compressive strength of 37.75 MPa and the impact strength of 17.82 J/m2. The ukam plant fibre laminate has the maximum tensile strength of 16.25 MPa and the impact strength of 9.8J/m among the natural fibres;the sisal laminate has the maximum compressive strength of 42 MPa and maximum bending strength of 0.0036 MPa among the natural fibres. Results indicated that natural fibres are of interest for low-cost engineering applications and can compete with artificial glass fibres (E-glass fibre) when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength. 展开更多
关键词 REINFORCED LAMINATES Hand lay-up Method E-GLASS FIBRE REINFORCED Natural FIBRE
下载PDF
Study of Mechanical Properties of Raffia Palm Fibre/Groundnut Shell Reinforced Epoxy Hybrid Composites
10
作者 Geoffrey Bem Nyior Sylvester Aondolumun Aye Sesugh Emmanuel Tile 《Journal of Minerals and Materials Characterization and Engineering》 2018年第2期179-192,共14页
The mechanical properties of raffia palm fibre and groundnut shell particulate/epoxy (RPF/GSP/E) hybrid composites have been studied. Raffia palm fibres were treated with 10% NaOH solution at room temperature, and gro... The mechanical properties of raffia palm fibre and groundnut shell particulate/epoxy (RPF/GSP/E) hybrid composites have been studied. Raffia palm fibres were treated with 10% NaOH solution at room temperature, and groundnut shell particulate of different sizes;75 μ, 150 μ and 300 μ were also chemically treated with 10% NaOH solution at room temperature. The hybrid composite was produced by hand lay-up technique with (10%, 20%, 30%, 40%, and 50%) reinforcements of raffia palm fibre and ground nut shell particulate in the ratio of 1:1. The treated fibres were taken with required weight fractions laid into the mould of size 200 × 150 × 5 mm3. Groundnut shell particulates were also taken with the required weight fraction, mixed with epoxy resin and the mixture was stirred thoroughly before pouring into the mould. Care was taken to avoid formation of air bubbles during pouring and the produced composite was cured under a load of 25 kg for 24 hours before it was removed from the mould. Effects of loading on the tensile, flexural and impact properties of the composite were evaluated. The significant findings of the results were that: tensile strength varied from 1.88 MPa to 9.56 MPa;Modulus of rupture (MOR) varied from 1.92 MPa to 41.6 MPa. While the modulus of elasticity, (MOE) values were in the range of 131.1 MPa to 4720 MPa and impact strength varied from 0.3 kJ/m2 to 1.6 kJ/m2. From the results obtained, the optimum mechanical properties were obtained at 40% loading of RPF/300 μ GSP/E composite. Considering these results, the composite material can be considered as an alternative material for use in automotive interior panels such as boot liner, side and door panels, rear storage shelf and roof cover. 展开更多
关键词 Hand lay-up Hybrid Composite MODULUS of RUPTURE MODULUS of Elasticity Raffia PALM Fibres/Groundnut SHELL Particulate
下载PDF
Deriving Tensile Properties of Glass Fiber Reinforced Polymers (GFRP) Using Mechanics of Composite Materials
11
作者 Thomas I. Altanopoulos Ioannis G. Raftoyiannis 《Open Journal of Composite Materials》 2020年第1期1-14,共14页
This work addresses the tensile properties of glass fiber reinforced polymers (GFRP) and investigates the different ways of estimating them without the cost associated with experimentation. This attempt is achieved th... This work addresses the tensile properties of glass fiber reinforced polymers (GFRP) and investigates the different ways of estimating them without the cost associated with experimentation. This attempt is achieved through comparison between experimental results, derived in accordance with the ASTM standards, and results obtained using the mechanics of composite materials. The experimental results are also compared to results derived from work by other researchers in order to corroborate the findings regarding the correlation of tensile properties of the GFRP material and the fiber volume fraction. 展开更多
关键词 Glass Fiber-Reinforced POLYMERS (GFRP) TENSILE Properties Hand lay-up Method
下载PDF
Fabrication and Characterization of Glass Fiber with SiC Reinforced Polymer Composites
12
作者 Rajashekar Reddy Palle Jens Schuster +1 位作者 Yousuf Pasha Shaik Monis Kazmi 《Open Journal of Composite Materials》 2022年第1期16-29,共14页
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve... Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin. 展开更多
关键词 Polymer Matrix Composite Epoxy and Polyester Resins Silicon Carbide Glass Fibers Hand lay-up Technique MODELLING
下载PDF
Design and Optimization of the CFRP Mirror Components 被引量:2
13
作者 Lei WEI Lei ZHANG Xiaoxue GONG 《Photonic Sensors》 SCIE EI CAS CSCD 2017年第3期270-277,共8页
As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to... As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3Hz. Under gravity affection coupling with +5℃ temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera. 展开更多
关键词 Pure-CFRP mirror lay-up design bipod integrated optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部