The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp...The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.展开更多
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti...Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.展开更多
在各类工程中产生了大量的高含水率废弃泥浆,过滤分离技术逐渐应用于泥浆的快速减量化中。为明确泥浆过滤的微观过程及堵塞机理,建立并验证了利用格子玻尔兹曼方法-离散单元法(Lattice Boltzmann method-discrete element method,LBM-D...在各类工程中产生了大量的高含水率废弃泥浆,过滤分离技术逐渐应用于泥浆的快速减量化中。为明确泥浆过滤的微观过程及堵塞机理,建立并验证了利用格子玻尔兹曼方法-离散单元法(Lattice Boltzmann method-discrete element method,LBM-DEM)模拟泥浆过滤。采用LBM-DEM方法模拟了多类条件下泥浆的过滤,包括不同泥浆含水率、过滤介质孔径、过滤压力及絮团性质。实验结果表明:泥浆在过滤过程中,过滤介质先作为主要的过滤单元,颗粒(或絮团)不断堵塞在过滤介质中或发生流失,当过滤介质完全堵塞后,颗粒(或絮团)不再发生流失,逐渐堆积在过滤介质表面,随着过滤的进行,泥皮逐渐累积增厚;堵塞完成的过滤介质及不断增厚的泥皮的组合体成为新的过滤系统。泥皮的渗透系数决定了新过滤系统的渗透能力,是影响泥浆过滤脱水的主要因素。LBM-DEM新方法的建立为研究及优化泥浆过滤效率提供了借鉴以及新的思路。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072217 and 42077254)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567).
文摘The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.
基金financially supported by the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567)the support of EPSRC Grant(UK):PURIFY(EP/V000756/1)the Scientific Research Foundation of Education Department of Hunan Province,China(Grant No.20B557).
文摘Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.
文摘在各类工程中产生了大量的高含水率废弃泥浆,过滤分离技术逐渐应用于泥浆的快速减量化中。为明确泥浆过滤的微观过程及堵塞机理,建立并验证了利用格子玻尔兹曼方法-离散单元法(Lattice Boltzmann method-discrete element method,LBM-DEM)模拟泥浆过滤。采用LBM-DEM方法模拟了多类条件下泥浆的过滤,包括不同泥浆含水率、过滤介质孔径、过滤压力及絮团性质。实验结果表明:泥浆在过滤过程中,过滤介质先作为主要的过滤单元,颗粒(或絮团)不断堵塞在过滤介质中或发生流失,当过滤介质完全堵塞后,颗粒(或絮团)不再发生流失,逐渐堆积在过滤介质表面,随着过滤的进行,泥皮逐渐累积增厚;堵塞完成的过滤介质及不断增厚的泥皮的组合体成为新的过滤系统。泥皮的渗透系数决定了新过滤系统的渗透能力,是影响泥浆过滤脱水的主要因素。LBM-DEM新方法的建立为研究及优化泥浆过滤效率提供了借鉴以及新的思路。