微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogo...微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogonal Planes)特征和支持向量机(Support Vector Machine,SVM)分类器的微表情识别方法。首先,采用LBP-TOP算子来提取微表情特征;然后,提出一种基于ReliefF与局部线性嵌入(Locally Linear Embedding,LLE)流形学习算法相结合的特征选择算法,对提取的LBP-TOP特征向量进行降维;最后,使用径向基函数(Radial Basis Function,RBF)核的SVM分类器进行分类,将测试样本图像序列的微表情分为5类:高兴、厌恶、压抑、惊讶、其他。在CASME Ⅱ微表情数据库上采用"留一人交叉验证"(Leave-One-Subject-Out Cross Validation,LOSO-CV)的方式进行了实验,可得到58.98%的分类准确率。实验结果表明了该算法的有效性。展开更多
微表情区别于普通的面部表情,具有持续时间短、面部强度低的特点,往往难以有效识别,制约了该领域的研究。针对上述难点,提出一种新颖的特征结合方法。采用全局光流技术在相邻帧间进行计算,得到微弱光流,通过传递前后各帧的运动信息,在...微表情区别于普通的面部表情,具有持续时间短、面部强度低的特点,往往难以有效识别,制约了该领域的研究。针对上述难点,提出一种新颖的特征结合方法。采用全局光流技术在相邻帧间进行计算,得到微弱光流,通过传递前后各帧的运动信息,在相隔多帧的两幅图像间体现更为明显的变化,解决了短历时和动作微弱的难题;将光流特征与LBP-TOP(Local Binary Patterns from Three Orthogonal Planes)算子提取的时空局部纹理特征相结合,补充描述人脸大多数区域的细节信息。选择随机森林分类器进行实验,实验结果表明,两种特征具有很好的互补性,在CASMEII数据库下,能识别5类情感,准确率由40.50%提高至64.46%,类间区分度也有相应改善。展开更多
为自动识别视频中表情类别,提出基于面部块表情特征编码的视频表情识别方法框架。检测并精确定位视频中人脸关键点位置,以检测到的关键点为中心,提取面部显著特征块。沿着时间轴方向,对面部各特征块提取LBP-TOP(local binary pattern fr...为自动识别视频中表情类别,提出基于面部块表情特征编码的视频表情识别方法框架。检测并精确定位视频中人脸关键点位置,以检测到的关键点为中心,提取面部显著特征块。沿着时间轴方向,对面部各特征块提取LBP-TOP(local binary pattern from three orthogonal planes)动态特征描述子,将这些描述子作为表情特征并输入Adaboost分类器进行训练和识别,预测视频表情类型。在国际通用表情数据库BU-4DFE的纹理图像上进行测试,取得了81.2%的平均识别率,验证了所提算法的有效性,与同领域其它主流算法相比,其具有很强的竞争性。展开更多
目的抑郁症是一种严重的精神类障碍,会显著影响患者的日常生活和工作。目前的抑郁症临床评估方法几乎都依赖于临床访谈或问卷调查,缺少系统有效地挖掘与抑郁症密切相关模式信息的手段。为了有效帮助临床医生诊断患者的抑郁症严重程度,...目的抑郁症是一种严重的精神类障碍,会显著影响患者的日常生活和工作。目前的抑郁症临床评估方法几乎都依赖于临床访谈或问卷调查,缺少系统有效地挖掘与抑郁症密切相关模式信息的手段。为了有效帮助临床医生诊断患者的抑郁症严重程度,情感计算领域涌现出越来越多的方法进行自动化的抑郁症识别。为了有效挖掘和编码人们面部含有的具有鉴别力的情感信息,本文提出了一种基于动态面部特征和稀疏编码的抑郁症自动识别框架。方法在面部特征提取方面,提出了一种新的可以深层次挖掘面部宏观和微观结构信息的动态特征描述符,即中值鲁棒局部二值模式—3D正交平面(median robust local binary patterns from three orthogonal planes,MRELBP-TOP)。由于MRELBP-TOP帧级特征的维度较高,且含有部分冗余信息。为了进一步去除冗余信息和保留关键信息,采用随机映射(random projection,RP)对帧级特征MRELBP-TOP进行降维。此外,为了进一步表征经过降维后的高层模式信息,采用稀疏编码(sparse coding,SC)来抽象紧凑的特征表示。最后,采用支持向量机进行抑郁程度的估计,即预测贝克抑郁分数(the Beck depression inventory-II,BDI-II)。结果在AVEC2013(the continuous audiovisual emotion and depression 2013)和AVEC2014测试集上,抑郁程度估计值与真实值之间的均方根误差(root mean square error,RMSE)分别为9.70和9.22,相比基准算法,识别精度分别提高了29%和15%。实验结果表明,本文方法优于当前大多数基于视频的抑郁症识别方法。结论本文构建了基于面部表情的抑郁症识别框架,实现了抑郁程度的有效估计;提出了帧级特征描述子MRELBP-TOP,有效提高了抑郁症识别的精度。展开更多
文摘微表情区别于普通的面部表情,具有持续时间短、面部强度低的特点,往往难以有效识别,制约了该领域的研究。针对上述难点,提出一种新颖的特征结合方法。采用全局光流技术在相邻帧间进行计算,得到微弱光流,通过传递前后各帧的运动信息,在相隔多帧的两幅图像间体现更为明显的变化,解决了短历时和动作微弱的难题;将光流特征与LBP-TOP(Local Binary Patterns from Three Orthogonal Planes)算子提取的时空局部纹理特征相结合,补充描述人脸大多数区域的细节信息。选择随机森林分类器进行实验,实验结果表明,两种特征具有很好的互补性,在CASMEII数据库下,能识别5类情感,准确率由40.50%提高至64.46%,类间区分度也有相应改善。
文摘为自动识别视频中表情类别,提出基于面部块表情特征编码的视频表情识别方法框架。检测并精确定位视频中人脸关键点位置,以检测到的关键点为中心,提取面部显著特征块。沿着时间轴方向,对面部各特征块提取LBP-TOP(local binary pattern from three orthogonal planes)动态特征描述子,将这些描述子作为表情特征并输入Adaboost分类器进行训练和识别,预测视频表情类型。在国际通用表情数据库BU-4DFE的纹理图像上进行测试,取得了81.2%的平均识别率,验证了所提算法的有效性,与同领域其它主流算法相比,其具有很强的竞争性。
文摘目的抑郁症是一种严重的精神类障碍,会显著影响患者的日常生活和工作。目前的抑郁症临床评估方法几乎都依赖于临床访谈或问卷调查,缺少系统有效地挖掘与抑郁症密切相关模式信息的手段。为了有效帮助临床医生诊断患者的抑郁症严重程度,情感计算领域涌现出越来越多的方法进行自动化的抑郁症识别。为了有效挖掘和编码人们面部含有的具有鉴别力的情感信息,本文提出了一种基于动态面部特征和稀疏编码的抑郁症自动识别框架。方法在面部特征提取方面,提出了一种新的可以深层次挖掘面部宏观和微观结构信息的动态特征描述符,即中值鲁棒局部二值模式—3D正交平面(median robust local binary patterns from three orthogonal planes,MRELBP-TOP)。由于MRELBP-TOP帧级特征的维度较高,且含有部分冗余信息。为了进一步去除冗余信息和保留关键信息,采用随机映射(random projection,RP)对帧级特征MRELBP-TOP进行降维。此外,为了进一步表征经过降维后的高层模式信息,采用稀疏编码(sparse coding,SC)来抽象紧凑的特征表示。最后,采用支持向量机进行抑郁程度的估计,即预测贝克抑郁分数(the Beck depression inventory-II,BDI-II)。结果在AVEC2013(the continuous audiovisual emotion and depression 2013)和AVEC2014测试集上,抑郁程度估计值与真实值之间的均方根误差(root mean square error,RMSE)分别为9.70和9.22,相比基准算法,识别精度分别提高了29%和15%。实验结果表明,本文方法优于当前大多数基于视频的抑郁症识别方法。结论本文构建了基于面部表情的抑郁症识别框架,实现了抑郁程度的有效估计;提出了帧级特征描述子MRELBP-TOP,有效提高了抑郁症识别的精度。