In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at eac...In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at each iteration not by soloving a quadratic subproblem with a trust region bound, but by solving a system of linear equations. Thus it reduces computational complexity and improves computation efficiency. It is proven that this algorithm is globally convergent and locally superlinear under some conditions.展开更多
In this paper, a new trust region algorithm for nonlinear equality constrained LC1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subprobiem with...In this paper, a new trust region algorithm for nonlinear equality constrained LC1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subprobiem with a trust region bound, but by solving a system of linear equations. Since the computational complexity of a QP-Problem is in general much larger than that of a system of linear equations, this method proposed in this paper may reduce the computational complexity and hence improve computational efficiency. Furthermore, it is proved under appropriate assumptions that this algorithm is globally and super-linearly convergent to a solution of the original problem. Some numerical examples are reported, showing the proposed algorithm can be beneficial from a computational point of view.展开更多
In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorith...In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.展开更多
文摘In this paper, a new trust region algorithm for unconstrained LC1 optimization problems is given. Compare with those existing trust regiion methods, this algorithm has a different feature: it obtains a stepsize at each iteration not by soloving a quadratic subproblem with a trust region bound, but by solving a system of linear equations. Thus it reduces computational complexity and improves computation efficiency. It is proven that this algorithm is globally convergent and locally superlinear under some conditions.
文摘In this paper, a new trust region algorithm for nonlinear equality constrained LC1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subprobiem with a trust region bound, but by solving a system of linear equations. Since the computational complexity of a QP-Problem is in general much larger than that of a system of linear equations, this method proposed in this paper may reduce the computational complexity and hence improve computational efficiency. Furthermore, it is proved under appropriate assumptions that this algorithm is globally and super-linearly convergent to a solution of the original problem. Some numerical examples are reported, showing the proposed algorithm can be beneficial from a computational point of view.
基金Supported by CERG: CityU 101005 of the Government of Hong Kong SAR, Chinathe National Natural ScienceFoundation of China, the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No.20040319003)the Natural Science Fund of Jiangsu Province of China (Grant No. BK2006214)
文摘In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.