3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of d...We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of durability and the probability of their formation. We performed the light fastness calculations of the monoazopyridone dyes. Using the semi-empirical methods of quantum chemistry AM1 and PM3, the reactivity indicators of superdelocalisability (SrE(N)) and the electron density distribution in ground state on the highest occupied HOMO orbital and the lowest unoccupied excited state LUMO in 2-pyridone phenylazo derivatives were calculated. Superdelocalisability coefficients enable the stability to oxidising agents of various chemical molecules depending on the tautomeric forms in which they may occur. The results of the electron density calculations at the HOMO and LUMO boundary orbitals allow to determine the tendency to electrophilic attack with singlet oxygen 1O2 or nucleophilic attack of the superoxide anion O2•−on a specific atom in the molecule. The structure of the dyes was optimised with MM+, MD and AM1 or PM3 until a constant energy value was achieved with a convergence criterion of 0.01 kcal/mol.展开更多
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
文摘We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of durability and the probability of their formation. We performed the light fastness calculations of the monoazopyridone dyes. Using the semi-empirical methods of quantum chemistry AM1 and PM3, the reactivity indicators of superdelocalisability (SrE(N)) and the electron density distribution in ground state on the highest occupied HOMO orbital and the lowest unoccupied excited state LUMO in 2-pyridone phenylazo derivatives were calculated. Superdelocalisability coefficients enable the stability to oxidising agents of various chemical molecules depending on the tautomeric forms in which they may occur. The results of the electron density calculations at the HOMO and LUMO boundary orbitals allow to determine the tendency to electrophilic attack with singlet oxygen 1O2 or nucleophilic attack of the superoxide anion O2•−on a specific atom in the molecule. The structure of the dyes was optimised with MM+, MD and AM1 or PM3 until a constant energy value was achieved with a convergence criterion of 0.01 kcal/mol.