The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic an...The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.展开更多
Typically the selection of a residential heating system focuses on first costs rather than the economic or environmental life cycle consequences.The use of life cycle assessment and life cycle cost methodologies in th...Typically the selection of a residential heating system focuses on first costs rather than the economic or environmental life cycle consequences.The use of life cycle assessment and life cycle cost methodologies in the design phase provide additional criteria for consideration when selecting a residential heating system.A comparative case study of a gas forced air and radiant solar heating system was conducted for a 3,000 square foot house located in Fort Collins,Colorado,U.S.A.The initial results of an analysis of the life cycle assessment and the life cycle cost data indicated the gas forced air system was superior,both environmentally and economically.Further data analysis pinpointed solar radiant system components for replacement in an effort to reduce both life cycle environmental emissions and costs.This analysis resulted in a hybrid radiant system using a high-efficiency gas-fired boiler,a choice that lowered both the solar radiant system’s costs and emissions.This new system had slightly lower environmental impacts than both the gas forced air system and solar radiant system.Unfortunately the hybrid system had less impact on the life cycle cost with the hybrid system substantially more expensive then the gas-forced air alternative.展开更多
文摘The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.
文摘Typically the selection of a residential heating system focuses on first costs rather than the economic or environmental life cycle consequences.The use of life cycle assessment and life cycle cost methodologies in the design phase provide additional criteria for consideration when selecting a residential heating system.A comparative case study of a gas forced air and radiant solar heating system was conducted for a 3,000 square foot house located in Fort Collins,Colorado,U.S.A.The initial results of an analysis of the life cycle assessment and the life cycle cost data indicated the gas forced air system was superior,both environmentally and economically.Further data analysis pinpointed solar radiant system components for replacement in an effort to reduce both life cycle environmental emissions and costs.This analysis resulted in a hybrid radiant system using a high-efficiency gas-fired boiler,a choice that lowered both the solar radiant system’s costs and emissions.This new system had slightly lower environmental impacts than both the gas forced air system and solar radiant system.Unfortunately the hybrid system had less impact on the life cycle cost with the hybrid system substantially more expensive then the gas-forced air alternative.
文摘为了兼顾电网经济与节能的双重目标,笔者基于全寿命周期成本(life cycle costs,LCC)理论,考虑节能因素,建立了一种新的变压器设计方案LCC评价方法。通过全面分析LCC各项组成,考虑负荷变化对负载损耗的动态影响,提出了更加完善的变压器LCC模型,并通过折现率与通货膨胀率对其进行了经济学修正。基于上述完善的变压器LCC模型,引入临界电价的概念,提出了损耗外LCC与损耗电量的对比分析方法,实现了一个变压器LCC评价辅助决策平台。以某500 k V变压器方案比选为例,论证了评价方法的实用性,并验证了其节能效果。