无线电能传输(wireless power transfer,WPT)系统具有安全、可靠、方便等优点。文章在分析WPT系统锂离子电池内阻及其典型充电方式的基础上,通过对WPT原理和谐振拓扑结构的研究,提出了基于LCC-S补偿式谐振拓扑的WPT系统。在电池等效负...无线电能传输(wireless power transfer,WPT)系统具有安全、可靠、方便等优点。文章在分析WPT系统锂离子电池内阻及其典型充电方式的基础上,通过对WPT原理和谐振拓扑结构的研究,提出了基于LCC-S补偿式谐振拓扑的WPT系统。在电池等效负载变化的情况下,通过合理的参数设计,LCC-S补偿式谐振拓扑结构可以分别实现与负载无关的恒流模式和恒压模式,无需切换拓扑结构。在理论分析的基础上,设计了系统的参数,并通过MATLAB仿真系统搭建仿真模型,验证了研究中的恒流模式和恒压模式。展开更多
针对双侧LCC型补偿拓扑的无线电能传输系统(double-sided LCC compensation network wireless power transmission,DLCC-WPT)系统谐振回路多、参数设计复杂的问题,分析DLCC-WPT系统的电路模态,从能量传递路径的角度出发,定义系统的能量...针对双侧LCC型补偿拓扑的无线电能传输系统(double-sided LCC compensation network wireless power transmission,DLCC-WPT)系统谐振回路多、参数设计复杂的问题,分析DLCC-WPT系统的电路模态,从能量传递路径的角度出发,定义系统的能量传递系数。基于能量传递系数和电路等效品质因数,建立系统电压增益和电流增益的数学模型,确定能量传递系数和电路等效品质因数的合理设计范围,依靠电流增益曲线划分逆变电路功率器件,实现零电压开通(zero voltage switching,ZVS)的工作区域。在此基础上搭建仿真模型和实验样机,对理论分析中的参数设计范围和工作区域进行仿真和实验验证,实验结果显示,在790W的输入功率下,实现90%的传输效率和逆变电路功率器件的软开关。展开更多
针对感应式电能传输(inductive power transfer,IPT)系统偏移造成输出电压不稳定和效率低下的问题,提出一种强抗偏移的S/SP补偿IPT系统,该系统在变耦合变自感和变耦合不变自感两种情况下均能保证较小的输出电压波动和较高的传输效率。首...针对感应式电能传输(inductive power transfer,IPT)系统偏移造成输出电压不稳定和效率低下的问题,提出一种强抗偏移的S/SP补偿IPT系统,该系统在变耦合变自感和变耦合不变自感两种情况下均能保证较小的输出电压波动和较高的传输效率。首先,基于Maxwell有限元仿真,分析罐型磁心松耦合变压器的磁通分布和磁场分布特性,总结不同方向偏移的参数变化规律。然后,提出一种提高系统抗偏移能力的S/SP补偿参数设计方法,得到相应的磁耦合机构设计准则,并结合磁仿真数据,通过数值计算方式求得系统输出波动和输入阻抗角的变化规律。最后,通过实验验证文中采用罐型磁心和新型S/SP补偿拓扑实现多方向偏移下高效率、低波动无线电能传输的可行性。在额定负载下,系统沿纵向和水平方向偏移的输出电压波动分别为2.7%和3.1%,传输效率维持在90.8%~94.3%。展开更多
针对电动汽车无线充电时线圈偏移会造成输出电压不稳定和效率迅速降低的问题,设计一个抗偏移性能优异的电动汽车用无线电能传输(wireless power transfer, WPT)系统,该系统采用LCC/S补偿拓扑以及扁平螺线管磁耦合结构,并在后级加入数字...针对电动汽车无线充电时线圈偏移会造成输出电压不稳定和效率迅速降低的问题,设计一个抗偏移性能优异的电动汽车用无线电能传输(wireless power transfer, WPT)系统,该系统采用LCC/S补偿拓扑以及扁平螺线管磁耦合结构,并在后级加入数字闭环Buck变换器,以实现精确的恒压输出。分析LCC/S补偿拓扑的输出特性,说明扁平螺线管磁耦合结构抗偏移性能优异的原因,借助有限元仿真软件优化线圈和磁芯的尺寸。为验证理论分析,搭建输出功率恒定为500W的系统样机,样机使用的磁耦合结构的外尺寸为306mm×300mm×16mm。结果表明,当传输距离176mm时,能量传输效率高达88%,即使横向偏移达到230mm,系统仍能输出恒定电压。展开更多
为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析...为了降低感应电能传输(inductive power transfer,IPT)充电系统反馈控制的复杂性,增强系统耦合机构抗偏移能力的同时保证系统恒压(constant voltage,CV)输出,该文基于LCC-S与S-LCC拓扑电路特性提出LCC-S与S-LCC混合拓扑电路并分析其抗偏移恒压输出特性;选取double-D quadrature(DDQ)结构线圈作为耦合机构,并提出抗偏移参数设计方法,以实现系统二维平面抗偏移恒压输出。此外,该方法还具有以下明显优点:无需复杂的反馈控制,几乎没有无功输入。最后,该文搭建1k W系统原理样机,在横向和垂向考察抗偏移恒压输出特性。负载在45-120Ω范围内变化时,系统输出电压波动始终介于设定的5%以内,在选定的线圈参数条件下,线圈横向最大偏移50%,而线圈在垂向最多可减小23.33%。实验结果表明该方法有效且可行。展开更多
文摘无线电能传输(wireless power transfer,WPT)系统具有安全、可靠、方便等优点。文章在分析WPT系统锂离子电池内阻及其典型充电方式的基础上,通过对WPT原理和谐振拓扑结构的研究,提出了基于LCC-S补偿式谐振拓扑的WPT系统。在电池等效负载变化的情况下,通过合理的参数设计,LCC-S补偿式谐振拓扑结构可以分别实现与负载无关的恒流模式和恒压模式,无需切换拓扑结构。在理论分析的基础上,设计了系统的参数,并通过MATLAB仿真系统搭建仿真模型,验证了研究中的恒流模式和恒压模式。
文摘针对双侧LCC型补偿拓扑的无线电能传输系统(double-sided LCC compensation network wireless power transmission,DLCC-WPT)系统谐振回路多、参数设计复杂的问题,分析DLCC-WPT系统的电路模态,从能量传递路径的角度出发,定义系统的能量传递系数。基于能量传递系数和电路等效品质因数,建立系统电压增益和电流增益的数学模型,确定能量传递系数和电路等效品质因数的合理设计范围,依靠电流增益曲线划分逆变电路功率器件,实现零电压开通(zero voltage switching,ZVS)的工作区域。在此基础上搭建仿真模型和实验样机,对理论分析中的参数设计范围和工作区域进行仿真和实验验证,实验结果显示,在790W的输入功率下,实现90%的传输效率和逆变电路功率器件的软开关。
文摘针对感应式电能传输(inductive power transfer,IPT)系统偏移造成输出电压不稳定和效率低下的问题,提出一种强抗偏移的S/SP补偿IPT系统,该系统在变耦合变自感和变耦合不变自感两种情况下均能保证较小的输出电压波动和较高的传输效率。首先,基于Maxwell有限元仿真,分析罐型磁心松耦合变压器的磁通分布和磁场分布特性,总结不同方向偏移的参数变化规律。然后,提出一种提高系统抗偏移能力的S/SP补偿参数设计方法,得到相应的磁耦合机构设计准则,并结合磁仿真数据,通过数值计算方式求得系统输出波动和输入阻抗角的变化规律。最后,通过实验验证文中采用罐型磁心和新型S/SP补偿拓扑实现多方向偏移下高效率、低波动无线电能传输的可行性。在额定负载下,系统沿纵向和水平方向偏移的输出电压波动分别为2.7%和3.1%,传输效率维持在90.8%~94.3%。
文摘针对电动汽车无线充电时线圈偏移会造成输出电压不稳定和效率迅速降低的问题,设计一个抗偏移性能优异的电动汽车用无线电能传输(wireless power transfer, WPT)系统,该系统采用LCC/S补偿拓扑以及扁平螺线管磁耦合结构,并在后级加入数字闭环Buck变换器,以实现精确的恒压输出。分析LCC/S补偿拓扑的输出特性,说明扁平螺线管磁耦合结构抗偏移性能优异的原因,借助有限元仿真软件优化线圈和磁芯的尺寸。为验证理论分析,搭建输出功率恒定为500W的系统样机,样机使用的磁耦合结构的外尺寸为306mm×300mm×16mm。结果表明,当传输距离176mm时,能量传输效率高达88%,即使横向偏移达到230mm,系统仍能输出恒定电压。