The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ...The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.展开更多
The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the p...The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the problem,a novel method for designing the field programmable gate array(FPGA)-based non-uniform rational B-spline(NURBS) interpolator and motion controller,which adopts the embedded multiprocessor technique,is proposed in this study.The hardware and software design for the multiprocessor,one of which is for NURBS interpolation and the other for position servo control,is presented.Performance analysis and experiments on an X-Y table are carried out,hardware cost as well as consuming time for interpolation and motion control is compared with the existing methods.The experimental and comparing results indicate that,compared with the existing methods,the proposed method can reduce the hardware cost by 97.5% using higher-accuracy interpolation algorithm within the period of 0.5 ms.A method which ensures the real-time performance and interpolation accuracy,and reduces the hardware cost significantly is proposed,and it’s practical in the use of industrial application.展开更多
The present paper studies the use of genetic algorithm to optimize the tuning of the Proportional, Integral and Derivative (PID) controller. Two control criteria were considered, the integral of the time multiplied by...The present paper studies the use of genetic algorithm to optimize the tuning of the Proportional, Integral and Derivative (PID) controller. Two control criteria were considered, the integral of the time multiplied by the absolute error (ITAE), and the integral of the time multiplied by the absolute output (ITAY). The time variant plant tested is a first-order plant with time delay. We aim at a real time implementation inside a digital board, so, the previous continuous approach was discretized and tested;the corresponding control algorithm is presented in this paper. The genetic algorithms and the PID controller are executed using the soft processor NIOS II in the Field Programmable Gate Array (FPGA). The computational results show the robustness and versatility of this technology.展开更多
Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate A...Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate Array(FPGA) re-alization method to manage the power flow was given.This control systembased onthe proposed modified GMF was proved to bea universal approxi mation systemin theory.The fuzzy control technique was combined with Eletronic Design Automatic(EDA)technique and a paralleling fuzzy controller was i mplemented in FPGA.Paralleling fuzzy controller based oni mproved GMF algo-rithm wasi mplemented on a Cyclone FPGA.The result of si mulation based on QuartusII confirmed the validity of the proposed method.展开更多
Combing with the generalized Hamiltonian system theory,by introducing a special form of sinusoidal function,a class of n-dimensional(n=1,2,3)controllable multi-scroll conservative chaos with complicated dynamics is co...Combing with the generalized Hamiltonian system theory,by introducing a special form of sinusoidal function,a class of n-dimensional(n=1,2,3)controllable multi-scroll conservative chaos with complicated dynamics is constructed.The dynamics characteristics including bifurcation behavior and coexistence of the system are analyzed in detail,the latter reveals abundant coexisting flows.Furthermore,the proposed system passes the NIST tests and has been implemented physically by FPGA.Compared to the multi-scroll dissipative chaos,the experimental portraits of the proposed system show better ergodicity,which have potential application value in secure communication and image encryption.展开更多
A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro...A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.展开更多
An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases...The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases. At lower speeds, a change in the current contributes the torque requirement which can be achieved either by voltage control (pulse width modulation) or instantaneous current control techniques. At high speeds, due to high back EMF, the regulation of current is crucial and achieved with the control of switching angles of phases. This type of control is referred as average torque control, where the torque is averaged over one stroke (2π/N<sub>r</sub>). With constant dwell angle, advancing the phase angle influences the current into the phase winding at minimum inductance position. It has more time to get the current out of the phase winding before the rotor reaches the negative inductance slope. To maintain the speed of the motor at different load conditions, the turn-on and turn-off angles are adaptively varied. The change in dwell angle may be required where the turn-on and turn-off angle may not be sufficient to reach the required speed. In this paper, a new algorithm is proposed for self tuning of switching parameters of SRM. The proposed algorithm is simulated in MATLAB-Simulink and experimentally validated with Field Programmable Gated Array (FPGA) using MATLAB- system generator environment.展开更多
Grid connected voltage source inverters (VSIs) are essential for the integration of the distributed energy resources. Hysteresis current control (HCC) is a commonly employed method for power control of VSIs. This cont...Grid connected voltage source inverters (VSIs) are essential for the integration of the distributed energy resources. Hysteresis current control (HCC) is a commonly employed method for power control of VSIs. This control method, in contrast with voltage control, provides good dynamics, good stability and implicit over current protection. However, the most important concern of digital implementation of HCC is related with the sampling period of the measured currents. This paper presents a predictive hysteresis current control (HCC) for grid connected voltage source inverter and its FPGA implementation. Simulation and experimental results are provided to verify the validity of the proposed implementation.展开更多
文摘The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.
基金supported by National Key Basic Research Program of China(973 ProgramGrant No.2011CB706804)+1 种基金Shanghai Municipal Science and Technology Commission of China(Grant No.11QH1401400)Research Project of State Key Laboratory of Mechanical System & Vibration of China(Grant No.MSVMS201102)
文摘The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the problem,a novel method for designing the field programmable gate array(FPGA)-based non-uniform rational B-spline(NURBS) interpolator and motion controller,which adopts the embedded multiprocessor technique,is proposed in this study.The hardware and software design for the multiprocessor,one of which is for NURBS interpolation and the other for position servo control,is presented.Performance analysis and experiments on an X-Y table are carried out,hardware cost as well as consuming time for interpolation and motion control is compared with the existing methods.The experimental and comparing results indicate that,compared with the existing methods,the proposed method can reduce the hardware cost by 97.5% using higher-accuracy interpolation algorithm within the period of 0.5 ms.A method which ensures the real-time performance and interpolation accuracy,and reduces the hardware cost significantly is proposed,and it’s practical in the use of industrial application.
文摘The present paper studies the use of genetic algorithm to optimize the tuning of the Proportional, Integral and Derivative (PID) controller. Two control criteria were considered, the integral of the time multiplied by the absolute error (ITAE), and the integral of the time multiplied by the absolute output (ITAY). The time variant plant tested is a first-order plant with time delay. We aim at a real time implementation inside a digital board, so, the previous continuous approach was discretized and tested;the corresponding control algorithm is presented in this paper. The genetic algorithms and the PID controller are executed using the soft processor NIOS II in the Field Programmable Gate Array (FPGA). The computational results show the robustness and versatility of this technology.
文摘Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate Array(FPGA) re-alization method to manage the power flow was given.This control systembased onthe proposed modified GMF was proved to bea universal approxi mation systemin theory.The fuzzy control technique was combined with Eletronic Design Automatic(EDA)technique and a paralleling fuzzy controller was i mplemented in FPGA.Paralleling fuzzy controller based oni mproved GMF algo-rithm wasi mplemented on a Cyclone FPGA.The result of si mulation based on QuartusII confirmed the validity of the proposed method.
基金Project supported by the Natural Science Foundation of Tianjin,China(Grant No.18JCYBJC87700)the Natural Science Foundation of China(Grant No.61603274)。
文摘Combing with the generalized Hamiltonian system theory,by introducing a special form of sinusoidal function,a class of n-dimensional(n=1,2,3)controllable multi-scroll conservative chaos with complicated dynamics is constructed.The dynamics characteristics including bifurcation behavior and coexistence of the system are analyzed in detail,the latter reveals abundant coexisting flows.Furthermore,the proposed system passes the NIST tests and has been implemented physically by FPGA.Compared to the multi-scroll dissipative chaos,the experimental portraits of the proposed system show better ergodicity,which have potential application value in secure communication and image encryption.
文摘A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases. At lower speeds, a change in the current contributes the torque requirement which can be achieved either by voltage control (pulse width modulation) or instantaneous current control techniques. At high speeds, due to high back EMF, the regulation of current is crucial and achieved with the control of switching angles of phases. This type of control is referred as average torque control, where the torque is averaged over one stroke (2π/N<sub>r</sub>). With constant dwell angle, advancing the phase angle influences the current into the phase winding at minimum inductance position. It has more time to get the current out of the phase winding before the rotor reaches the negative inductance slope. To maintain the speed of the motor at different load conditions, the turn-on and turn-off angles are adaptively varied. The change in dwell angle may be required where the turn-on and turn-off angle may not be sufficient to reach the required speed. In this paper, a new algorithm is proposed for self tuning of switching parameters of SRM. The proposed algorithm is simulated in MATLAB-Simulink and experimentally validated with Field Programmable Gated Array (FPGA) using MATLAB- system generator environment.
文摘Grid connected voltage source inverters (VSIs) are essential for the integration of the distributed energy resources. Hysteresis current control (HCC) is a commonly employed method for power control of VSIs. This control method, in contrast with voltage control, provides good dynamics, good stability and implicit over current protection. However, the most important concern of digital implementation of HCC is related with the sampling period of the measured currents. This paper presents a predictive hysteresis current control (HCC) for grid connected voltage source inverter and its FPGA implementation. Simulation and experimental results are provided to verify the validity of the proposed implementation.