Purpose:This study explores the underlying research topics regarding CRISPR based on the LDA model and figures out trends in knowledge transfer from science to technology in this area over the latest 10 years.Design/m...Purpose:This study explores the underlying research topics regarding CRISPR based on the LDA model and figures out trends in knowledge transfer from science to technology in this area over the latest 10 years.Design/methodology/approach:We collected publications on CRISPR between 2011 and2020 from the Web of Science,and traced all the patents citing them from lens.org.15,904 articles and 18,985 patents in total are downloaded and analyzed.The LDA model was applied to identify underlying research topics in related research.In addition,some indicators were introduced to measure the knowledge transfer from research topics of scientific publications to IPC-4 classes of patents.Findings:The emerging research topics on CRISPR were identified and their evolution over time displayed.Furthermore,a big picture of knowledge transition from research topics to technological classes of patents was presented.We found that for all topics on CRISPR,the average first transition year,the ratio of articles cited by patents,the NPR transition rate are respectively 1.08,15.57%,and 1.19,extremely shorter and more intensive than those of general fields.Moreover,the transition patterns are different among research topics.Research limitations:Our research is limited to publications retrieved from the Web of Science and their citing patents indexed in lens.org.A limitation inherent with LDA analysis is in the manual interpretation and labeling of"topics".Practical implications:Our study provides good references for policy-makers on allocating scientific resources and regulating financial budgets to face challenges related to the transformative technology of CRISPR.Originality/value:The LDA model here is applied to topic identification in the area of transformative researches for the first time,as exemplified on CRISPR.Additionally,the dataset of all citing patents in this area helps to provide a full picture to detect the knowledge transition between S&T.展开更多
Purpose:This article aims to describe the global research profile and the development trends of single cell research from the perspective of bibliometric analysis and semantic mining.Design/methodology/approach:The li...Purpose:This article aims to describe the global research profile and the development trends of single cell research from the perspective of bibliometric analysis and semantic mining.Design/methodology/approach:The literatures on single cell research were extracted from Clarivate Analytic’s Web of Science Core Collection between 2009 and 2019.Firstly,bibliometric analyses were performed with Thomson Data Analyzer(TDA).Secondly,topic identification and evolution trends of single cell research was conducted through the LDA topic model.Thirdly,taking the post-discretized method which is used for topic evolution analysis for reference,the topics were also be dispersed to countries to detect the spatial distribution.Findings:The publication of single cell research shows significantly increasing tendency in the last decade.The topics of single cell research field can be divided into three categories,which respectively refers to single cell research methods,mechanism of biological process,and clinical application of single cell technologies.The different trends of these categories indicate that technological innovation drives the development of applied research.The continuous and rapid growth of the topic strength in the field of cancer diagnosis and treatment indicates that this research topic has received extensive attention in recent years.The topic distributions of some countries are relatively balanced,while for the other countries,several topics show significant superiority.Research limitations:The analyzed data of this study only contain those were included in the Web of Science Core Collection.Practical implications:This study provides insights into the research progress regarding single cell field and identifies the most concerned topics which reflect potential opportunities and challenges.The national topic distribution analysis based on the post-discretized analysis method extends topic analysis from time dimension to space dimension.Originality/value:This paper combines bibliometric analysis and LDA model to analyze the evolution trends of single cell research field.The method of extending post-discretized analysis from time dimension to space dimension is distinctive and insightful.展开更多
Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from ...Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from 1990 s to 2020,topics are extracted by LDA model and hot topics are selected based on life cycle theory.Topic evolution paths are generated to contrast evolution of hot topics between home and abroad which are grouped into dimensions of technology and application.It fails to analyze the lagging performance and reasons of research hot topics in the field of Digital Library at home and abroad.In technological dimension of Digital Library,the research content in China lags behind that at abroad.In terms of application dimension,Chinese application tends to focus on social sciences,while application at abroad tends to focus on natural sciences.The evolution of overall research focus is U-shaped,which gradually shifted from technological research to application research,and now turn back to technological dimension.Nowadays,there are also many emerging topics combined with big data technology.展开更多
The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminou...The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.展开更多
基金supported by the National Natural Science Foundation of China,Grant numbers:71974167 and 71573225。
文摘Purpose:This study explores the underlying research topics regarding CRISPR based on the LDA model and figures out trends in knowledge transfer from science to technology in this area over the latest 10 years.Design/methodology/approach:We collected publications on CRISPR between 2011 and2020 from the Web of Science,and traced all the patents citing them from lens.org.15,904 articles and 18,985 patents in total are downloaded and analyzed.The LDA model was applied to identify underlying research topics in related research.In addition,some indicators were introduced to measure the knowledge transfer from research topics of scientific publications to IPC-4 classes of patents.Findings:The emerging research topics on CRISPR were identified and their evolution over time displayed.Furthermore,a big picture of knowledge transition from research topics to technological classes of patents was presented.We found that for all topics on CRISPR,the average first transition year,the ratio of articles cited by patents,the NPR transition rate are respectively 1.08,15.57%,and 1.19,extremely shorter and more intensive than those of general fields.Moreover,the transition patterns are different among research topics.Research limitations:Our research is limited to publications retrieved from the Web of Science and their citing patents indexed in lens.org.A limitation inherent with LDA analysis is in the manual interpretation and labeling of"topics".Practical implications:Our study provides good references for policy-makers on allocating scientific resources and regulating financial budgets to face challenges related to the transformative technology of CRISPR.Originality/value:The LDA model here is applied to topic identification in the area of transformative researches for the first time,as exemplified on CRISPR.Additionally,the dataset of all citing patents in this area helps to provide a full picture to detect the knowledge transition between S&T.
基金the Chinese Academy of Sciences literature information capability construction project of 2020“Construction of strategic information research and consultation system in science and technology field”(Grant No.E290001)。
文摘Purpose:This article aims to describe the global research profile and the development trends of single cell research from the perspective of bibliometric analysis and semantic mining.Design/methodology/approach:The literatures on single cell research were extracted from Clarivate Analytic’s Web of Science Core Collection between 2009 and 2019.Firstly,bibliometric analyses were performed with Thomson Data Analyzer(TDA).Secondly,topic identification and evolution trends of single cell research was conducted through the LDA topic model.Thirdly,taking the post-discretized method which is used for topic evolution analysis for reference,the topics were also be dispersed to countries to detect the spatial distribution.Findings:The publication of single cell research shows significantly increasing tendency in the last decade.The topics of single cell research field can be divided into three categories,which respectively refers to single cell research methods,mechanism of biological process,and clinical application of single cell technologies.The different trends of these categories indicate that technological innovation drives the development of applied research.The continuous and rapid growth of the topic strength in the field of cancer diagnosis and treatment indicates that this research topic has received extensive attention in recent years.The topic distributions of some countries are relatively balanced,while for the other countries,several topics show significant superiority.Research limitations:The analyzed data of this study only contain those were included in the Web of Science Core Collection.Practical implications:This study provides insights into the research progress regarding single cell field and identifies the most concerned topics which reflect potential opportunities and challenges.The national topic distribution analysis based on the post-discretized analysis method extends topic analysis from time dimension to space dimension.Originality/value:This paper combines bibliometric analysis and LDA model to analyze the evolution trends of single cell research field.The method of extending post-discretized analysis from time dimension to space dimension is distinctive and insightful.
文摘Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from 1990 s to 2020,topics are extracted by LDA model and hot topics are selected based on life cycle theory.Topic evolution paths are generated to contrast evolution of hot topics between home and abroad which are grouped into dimensions of technology and application.It fails to analyze the lagging performance and reasons of research hot topics in the field of Digital Library at home and abroad.In technological dimension of Digital Library,the research content in China lags behind that at abroad.In terms of application dimension,Chinese application tends to focus on social sciences,while application at abroad tends to focus on natural sciences.The evolution of overall research focus is U-shaped,which gradually shifted from technological research to application research,and now turn back to technological dimension.Nowadays,there are also many emerging topics combined with big data technology.
文摘The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.