A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ...A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.展开更多
A novel substrate current model is proposed for submicron and deep-submicron li ghtly-doped-drain (LDD) n-MOSFET,with the emphasis on accurate description of the characteristics length by taking the effects of channe...A novel substrate current model is proposed for submicron and deep-submicron li ghtly-doped-drain (LDD) n-MOSFET,with the emphasis on accurate description of the characteristics length by taking the effects of channel length and bias int o account.This is due to that the characteristics lenth significantly affects th e maximum lateral electric field and the length of velocity saturation region,bo th of which are very important in modeling the drain current and the substrate c urrent.The comparison between simulations and experiments shows a good predictio n of the model for submicron and deep-submicron LDD MOSFET.Moreover,the analyti cal model is suitable for descgn of devices as it is low in computation consumpt ion.展开更多
This paper presents a simple novel technique-forward gated-diode R-G current method-to determine the lateral lightly-doped source/drain (S/D) region interface state density and effective surface doping concentration o...This paper presents a simple novel technique-forward gated-diode R-G current method-to determine the lateral lightly-doped source/drain (S/D) region interface state density and effective surface doping concentration of the lightly-doped drain (LDD) N- MOSFET's simultaneously. One interesting result of the numerical analysis is the direct characterization of the interface state density and characteristic gate voltage values corresponding to LDD effective surface doping concentration. It is observed that the S/D N- surface doping concentration and corresponding region's interface state density are R-G current peak position and amplitude dependent, respectively. It is convincible that the proposed method is well suitable for the characterization of deep sub-micron MOSFET's in the current ULSI technology.展开更多
A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good ...A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good agreement with measurement,and show that deep submicron LDD MOSFET has larger substrate current than submicron device does.The improved model costs low computation consumption,and is effective in manifestation of hot carrier effect and other effects in deep submicron devices,in turn is suitable for design and reliability analysis of scaling down devices.展开更多
In this paper,we present the effect of process parameters variations on Ⅰ-Ⅴ characteristics of LDD MOSFETs through a simulation study,applying also to any submicron device.In particular,we examine the effect of vari...In this paper,we present the effect of process parameters variations on Ⅰ-Ⅴ characteristics of LDD MOSFETs through a simulation study,applying also to any submicron device.In particular,we examine the effect of variation of ionic implantation for different channel doping involved in MOSFET production.At last,we examine a linear Ⅰ-Ⅴ model to simulate more adequately the effects of variation of the process parameters as correction to the base model.展开更多
文摘A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.
文摘A novel substrate current model is proposed for submicron and deep-submicron li ghtly-doped-drain (LDD) n-MOSFET,with the emphasis on accurate description of the characteristics length by taking the effects of channel length and bias int o account.This is due to that the characteristics lenth significantly affects th e maximum lateral electric field and the length of velocity saturation region,bo th of which are very important in modeling the drain current and the substrate c urrent.The comparison between simulations and experiments shows a good predictio n of the model for submicron and deep-submicron LDD MOSFET.Moreover,the analyti cal model is suitable for descgn of devices as it is low in computation consumpt ion.
基金Sponsored by Motorola CPTL(Contract No:MSPSDDLCHINA-0004)
文摘This paper presents a simple novel technique-forward gated-diode R-G current method-to determine the lateral lightly-doped source/drain (S/D) region interface state density and effective surface doping concentration of the lightly-doped drain (LDD) N- MOSFET's simultaneously. One interesting result of the numerical analysis is the direct characterization of the interface state density and characteristic gate voltage values corresponding to LDD effective surface doping concentration. It is observed that the S/D N- surface doping concentration and corresponding region's interface state density are R-G current peak position and amplitude dependent, respectively. It is convincible that the proposed method is well suitable for the characterization of deep sub-micron MOSFET's in the current ULSI technology.
文摘A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good agreement with measurement,and show that deep submicron LDD MOSFET has larger substrate current than submicron device does.The improved model costs low computation consumption,and is effective in manifestation of hot carrier effect and other effects in deep submicron devices,in turn is suitable for design and reliability analysis of scaling down devices.
文摘In this paper,we present the effect of process parameters variations on Ⅰ-Ⅴ characteristics of LDD MOSFETs through a simulation study,applying also to any submicron device.In particular,we examine the effect of variation of ionic implantation for different channel doping involved in MOSFET production.At last,we examine a linear Ⅰ-Ⅴ model to simulate more adequately the effects of variation of the process parameters as correction to the base model.