Highly oriented Mg-Al layered double hydroxide(LDHs)films were deposited on magnesium alloy AZ31 with different deformation processes by an easy in-situ growth method.The characteristics of the films were investigated...Highly oriented Mg-Al layered double hydroxide(LDHs)films were deposited on magnesium alloy AZ31 with different deformation processes by an easy in-situ growth method.The characteristics of the films were investigated by optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),and electrochemical,immersion and hydrogen evolution tests.The corrosion protection performance ranked the LDHs films as the increasing series:CS-LDHs(as-cast sample with LDHs)<AE-LDHs(asymmetric extrusion sample with LDHs)<SE-LDHs(symmetric extrusion sample with LDHs)<RS-LDHs(rolled sample with LDHs).A thicker and more compact LDH conversion coating was formed on the RS sample,and had the best corrosion protection performance.展开更多
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s...A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.展开更多
This study explores the potential of LDH flakes decorated with metallic oxide nanoparticles to function as both anti-corrosion barriers against chloride anions and heterogeneous photocatalysts for tetracycline degrada...This study explores the potential of LDH flakes decorated with metallic oxide nanoparticles to function as both anti-corrosion barriers against chloride anions and heterogeneous photocatalysts for tetracycline degradation under visible light.The process involves modifying the primarily MgO-based inorganic porous film by growing a MgFe LDH film,followed by the individual and dual incorporation of SnO_(2)and WO_(3)nanoparticles.The dual incorporation of these nanoparticles into the LDH matrix leads to synergistic interactions,effectively sealing pre-existing defects within LDH flakes and facilitating the in-situ formation of catalytic sites through oxidation and the induction of surface oxygen vacancy defects,which synergistically contribute to the enhancement of both electrochemical and photocatalytic activities.The enhanced electrochemical stability is reflected in a significant reduction in corrosion current density by 4 orders of magnitude compared to unmodified porous film.Additionally,the decorated film demonstrates sustained photocatalytic functionality,achieving significant degradation(95.5%)of tetracycline within two hours.This study presents a novel approach,highlighting the dual effectiveness of LDHs decorated by dual metal oxides as an anti-corrosive agent and photocatalyst,with promising implications for environmental remediation and wastewater purification.展开更多
Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this ...Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this work,anti-corrosion coatings were fabricated via the insitu growth of the corrosion inhibitors intercalated magnesium-aluminum layered double hydroxide(Mg-Al LDH)on AZ31 magnesium alloy and then post-sealing it by a super-hydrophobic coating.SEM,XRD,EDS,FTIR,XPS and contact angle test were conducted to analyze physical/chemical features of these coatings.Potentiodynamic polarization curves and electrochemical impedance spectroscopy were recorded to assess the anti-corrosion performance of prepared coatings.Surprisingly,Mg-Al LDH with molybdate intercalation and lauric acid modification achieves the excellent corrosion inhibition performance(99.99%)due to the multicomponent synergistic effect such as the physical protection of Mg-Al LDH,the corrosion inhibition of molybdate and super-hydrophobic properties of lauric acid.This work presents a scientific perspective and novel design philosophy to fabricate the efficient anti-corrosion coating to protect magnesium alloys and then expand their potential applications in other field.展开更多
In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology o...In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology of LDH films were investigated by X-ray diffraction(XRD),Fourier transform infrared(FTIR)and scanning electronic microscopy(SEM),and the corrosion behavior of LDH films was further studied by electrochemical impedance spectroscopy(EIS).The influence of Al^(3+)concentration on the growth behavior of LDH was also discussed.The results indicated that the nest-like structure of MgAl-LDH film was composed of interconnected MgAl-LDH nanosheets.Besides,the LDH obtained in0.032 mol·L^(-1)Al^(3+)solution,possessing dense laminated structure,could effectively seal the porous surface of anodic oxide film.EIS results revealed that the samples coated with LDH films showed a higher electrochemical impedance,and thus,the corrosion resistance of samples coated with LDH films was signally improved compared with the anodized alloy.展开更多
A doublely-doped layered double hydroxide(LDH)film was produced on an anodized magnesium alloy AZ31.The Ce-doped Mg-Al LDH film was prepared by in-situ hydrothermal treatment method,and the intercalation of vanadate w...A doublely-doped layered double hydroxide(LDH)film was produced on an anodized magnesium alloy AZ31.The Ce-doped Mg-Al LDH film was prepared by in-situ hydrothermal treatment method,and the intercalation of vanadate was realized by ion-exchange reaction.The structure,morphology and composition of as-prepared LDH film were investigated by X-ray diffractometer,field-emission scanning electronic microscope and energy dispersive spectrometry.Results indicated that a uniform and compact LDH film was formed and the intercalation of Ce^(3+)and vanadate would change the crystal structure of LDHs.The results of the potentiodynamic polarization,electrochemical impedance spectra,hydrogen evolution and corrosion weight loss tests showed the Ce^(3+)and vanadate anions significantly improve the impedance of LDH film,and the active double-doped LDH film could effectively protect the magnesium substrate from corrosion.展开更多
Layered double hydroxides(LDHs),a class of two-dimensional(2D)brucite-like layers,have been effectively applied in diverse fields.However,the current synthesis methods restrict the in situ scaling-up and tunable produ...Layered double hydroxides(LDHs),a class of two-dimensional(2D)brucite-like layers,have been effectively applied in diverse fields.However,the current synthesis methods restrict the in situ scaling-up and tunable production of LDH-based materials.Inspired by the growing characteristic of“Bryophyllum pinnatum”,a sacrificial co-sputtered Zn-Al transition layer was introduced for the first time to in situ grow a scalable-manufactured and thickness-controllable LDH film on arbitrary substrate materials with flexible shapes through“partial dissolution”and“solution infiltration”processes.Diverse LDH films could be tailored by the creative regulation of the component,structure and surface state of the transition layer.Results showed that the as-prepared LDH film had strong mechanical robustness under harsh abrasion conditions due to its large thickness and multi-level microstructure.Moreover,a series of galvanic couple model experiments based on Zn/Al single-metal transition layers were designed to solve the real-time monitoring issue in the complex hydrothermal solution.This work not only develops a new strategy to design and grow in situ LDH films with multifaceted features,but also reveals sophisticated LDH formation mechanisms.Hence,the findings of this study may broaden the practical application of LDH-based materials toward advanced and smart devices.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51971040,51701029 and 51531002)the National Key Research and Development Program of China(No.2016YFB0301100)+2 种基金the China Postdoctoral Science Foundation Funded Project(Nos.2017M620410 and 2018T110942)the Chongqing Postdoctoral Scientific Research Foundation(No.Xm2017010)the Fundamental Research Funds for the Central Universities(No.2018CDGFCL005)。
文摘Highly oriented Mg-Al layered double hydroxide(LDHs)films were deposited on magnesium alloy AZ31 with different deformation processes by an easy in-situ growth method.The characteristics of the films were investigated by optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),and electrochemical,immersion and hydrogen evolution tests.The corrosion protection performance ranked the LDHs films as the increasing series:CS-LDHs(as-cast sample with LDHs)<AE-LDHs(asymmetric extrusion sample with LDHs)<SE-LDHs(symmetric extrusion sample with LDHs)<RS-LDHs(rolled sample with LDHs).A thicker and more compact LDH conversion coating was formed on the RS sample,and had the best corrosion protection performance.
基金The research is supported by the National Science Foundation of China(key project grant No.51731008 and general project grant No.51671163).
文摘A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(no.2022R1A2C1006743)。
文摘This study explores the potential of LDH flakes decorated with metallic oxide nanoparticles to function as both anti-corrosion barriers against chloride anions and heterogeneous photocatalysts for tetracycline degradation under visible light.The process involves modifying the primarily MgO-based inorganic porous film by growing a MgFe LDH film,followed by the individual and dual incorporation of SnO_(2)and WO_(3)nanoparticles.The dual incorporation of these nanoparticles into the LDH matrix leads to synergistic interactions,effectively sealing pre-existing defects within LDH flakes and facilitating the in-situ formation of catalytic sites through oxidation and the induction of surface oxygen vacancy defects,which synergistically contribute to the enhancement of both electrochemical and photocatalytic activities.The enhanced electrochemical stability is reflected in a significant reduction in corrosion current density by 4 orders of magnitude compared to unmodified porous film.Additionally,the decorated film demonstrates sustained photocatalytic functionality,achieving significant degradation(95.5%)of tetracycline within two hours.This study presents a novel approach,highlighting the dual effectiveness of LDHs decorated by dual metal oxides as an anti-corrosive agent and photocatalyst,with promising implications for environmental remediation and wastewater purification.
基金This work is financially supported by the Graduate Research and Innovation of Chongqing,China(Grant No.CYB18002)the National Natural Science Foundation of China(Grant No.21576034)+2 种基金the State Education Ministry and Fundamental Research Funds for the Central Universities(2019CDQYCL042,106112017CDJXSYY0001,2018CDYJSY0055,106112017CDJQJ138802,106112017CDJSK04XK11,2018CDQYCL0027)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)Fundamental Re-search Funds for the Central Universities(NO.2018CDJDCD0001).
文摘Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this work,anti-corrosion coatings were fabricated via the insitu growth of the corrosion inhibitors intercalated magnesium-aluminum layered double hydroxide(Mg-Al LDH)on AZ31 magnesium alloy and then post-sealing it by a super-hydrophobic coating.SEM,XRD,EDS,FTIR,XPS and contact angle test were conducted to analyze physical/chemical features of these coatings.Potentiodynamic polarization curves and electrochemical impedance spectroscopy were recorded to assess the anti-corrosion performance of prepared coatings.Surprisingly,Mg-Al LDH with molybdate intercalation and lauric acid modification achieves the excellent corrosion inhibition performance(99.99%)due to the multicomponent synergistic effect such as the physical protection of Mg-Al LDH,the corrosion inhibition of molybdate and super-hydrophobic properties of lauric acid.This work presents a scientific perspective and novel design philosophy to fabricate the efficient anti-corrosion coating to protect magnesium alloys and then expand their potential applications in other field.
基金supported by the National Key Research and Development Program of China(2016YFB0301100)the National Natural Science Foundation of China(51701029,51531002,51474043)+2 种基金China Postdoctoral Science Foundation Funded Project(2017M620410,2018T110942)the ChongqingPostdoctoral Scientific Research Foundation(Xm2017010)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2016jcyjA0388,cstc2017jcyjBX0040)。
文摘In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology of LDH films were investigated by X-ray diffraction(XRD),Fourier transform infrared(FTIR)and scanning electronic microscopy(SEM),and the corrosion behavior of LDH films was further studied by electrochemical impedance spectroscopy(EIS).The influence of Al^(3+)concentration on the growth behavior of LDH was also discussed.The results indicated that the nest-like structure of MgAl-LDH film was composed of interconnected MgAl-LDH nanosheets.Besides,the LDH obtained in0.032 mol·L^(-1)Al^(3+)solution,possessing dense laminated structure,could effectively seal the porous surface of anodic oxide film.EIS results revealed that the samples coated with LDH films showed a higher electrochemical impedance,and thus,the corrosion resistance of samples coated with LDH films was signally improved compared with the anodized alloy.
基金financially supported by the National Natural Science Foundation of China(No.51971040)the Graduate Research and Innovation Foundation of Chongqing,China(No.CYS19002)+4 种基金the National Natural Science Foundation of China(Nos.51701029 and 51531002)the National Key Research and Development Program of China(No.2016YFB0301100)the China Postdoctoral Science Foundation Funded Project(Nos.2017M620410 and 2018T110942)the Chongqing Postdoctoral Scientific Research Foundation(No.Xm2017010)the Fundamental Research Funds for the Central Universities(No.2018CDGFCL005)。
文摘A doublely-doped layered double hydroxide(LDH)film was produced on an anodized magnesium alloy AZ31.The Ce-doped Mg-Al LDH film was prepared by in-situ hydrothermal treatment method,and the intercalation of vanadate was realized by ion-exchange reaction.The structure,morphology and composition of as-prepared LDH film were investigated by X-ray diffractometer,field-emission scanning electronic microscope and energy dispersive spectrometry.Results indicated that a uniform and compact LDH film was formed and the intercalation of Ce^(3+)and vanadate would change the crystal structure of LDHs.The results of the potentiodynamic polarization,electrochemical impedance spectra,hydrogen evolution and corrosion weight loss tests showed the Ce^(3+)and vanadate anions significantly improve the impedance of LDH film,and the active double-doped LDH film could effectively protect the magnesium substrate from corrosion.
基金supported by the National Natural Science Foundation of China(51731008 and 51671163)China Scholarship Council for providing support(202006310139)。
文摘Layered double hydroxides(LDHs),a class of two-dimensional(2D)brucite-like layers,have been effectively applied in diverse fields.However,the current synthesis methods restrict the in situ scaling-up and tunable production of LDH-based materials.Inspired by the growing characteristic of“Bryophyllum pinnatum”,a sacrificial co-sputtered Zn-Al transition layer was introduced for the first time to in situ grow a scalable-manufactured and thickness-controllable LDH film on arbitrary substrate materials with flexible shapes through“partial dissolution”and“solution infiltration”processes.Diverse LDH films could be tailored by the creative regulation of the component,structure and surface state of the transition layer.Results showed that the as-prepared LDH film had strong mechanical robustness under harsh abrasion conditions due to its large thickness and multi-level microstructure.Moreover,a series of galvanic couple model experiments based on Zn/Al single-metal transition layers were designed to solve the real-time monitoring issue in the complex hydrothermal solution.This work not only develops a new strategy to design and grow in situ LDH films with multifaceted features,but also reveals sophisticated LDH formation mechanisms.Hence,the findings of this study may broaden the practical application of LDH-based materials toward advanced and smart devices.