Aims: Small dense LDL (sdLDL) cholesterol is considered a cardiovascular risk. Our purpose in this study was to evaluate the efficacy of rosuvastatin in reducing sdLDL and large buoyant LDL (lbLDL-C) in hypercholester...Aims: Small dense LDL (sdLDL) cholesterol is considered a cardiovascular risk. Our purpose in this study was to evaluate the efficacy of rosuvastatin in reducing sdLDL and large buoyant LDL (lbLDL-C) in hypercholesterolemia. Methods: Fifty-six patients with a mean baseline LDL-cholesterol (LDL-C) concentration of 173.9 ± 40.5 mg/dL were treated with rosuvastatin 2.5 mg/day for 12 weeks. LDL-C, sdLDL-C, and apolipoprotein (apo) B were assessed and l lbLDL-C was calculated (LDL-C minus sdLDL-C). Results: After 12-week treatment with rosuvastatin 2.5mg, sdLDL-C and lbLDL-C were significantly reduced from 62.1 ± 23.8 mg/dL to 34.0 ± 13.4 mg/dL, p <0.001 and 112.7 ± 34.9 mg/dL to 77.2± 29.2 mg/dL, p < 0.001 respectively, and sdLDL-C/lbLDL-C ratio and apo B also decreased significantly, from 0.36 ± 0.02 to 0.32 ± 0.02, p < 0.005 and 134.2 ± 4.3 to 93.6 ± 3.5 mg/dl, p < 0.001, respectively. In diabetic subjects there was significant correlation between percent reductions in the plasma triglyceride and sdLDL-C/ lbLDL-C ratio (r = 0.58, p < 0.005), but not between the percentage decrease in plasma triglyceride and sdLDL-C. Conclusions: Treatment with rosuvastatin is associated with significant reduction in sdLDL, lbLDL and sdLDL/lbLDL ratio.展开更多
Aims: There has been no evidence on the effects of evolocumab, protein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on small size LDL. We observationally investigated the efficacy and side effects of evolocum...Aims: There has been no evidence on the effects of evolocumab, protein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on small size LDL. We observationally investigated the efficacy and side effects of evolocumab on the LDL subfraction particle diameter using PAGE system for lipoprotein analysis. Methods: We defined 30 patients with high-risk hyperlipidemia. As for analysis of LDL subfraction profile, we used polyacrylamide gel electrophoresis three methods: 1) 3% nondenatured poly-acrylamide gel electrophoresis method (3%PAGE), 2) 2% - 16% nondenatured poly-acrylamide gradient gel electro-phoresis method (2% - 16% GGE) and 3) 2.7% - 5% GGE. Evolocumab 140 mg/day administered together with statin significantly improved serum total cholesterol (TC), triglyceride (TG), high-dense lipoprotein-cholesterol (HDL-C), and LDL-C after four-week treatment. Results: TC, TG, HDL-C and LDL-C levels were improved by, respectively, 33%, 20%, 10%, and 54%. The mean LDL size significantly increased from 25.6 ± 0.4 nm to 26.4 ± 0.8 nm. The small dense LDL-cholesterol (sdLDL-C), large buoyant LDL-cholesterol (lbLDL-C), and mid-band lipoprotein-cholesterol were reduced, respectively. Therefore, the preliminary study on this paper can be the first step into a new insight on the world of lipid metabolism. Conclusion: Short-term administration of evolocumab addedons to statin therapy, significantly reduced small size LDL levels.展开更多
文摘Aims: Small dense LDL (sdLDL) cholesterol is considered a cardiovascular risk. Our purpose in this study was to evaluate the efficacy of rosuvastatin in reducing sdLDL and large buoyant LDL (lbLDL-C) in hypercholesterolemia. Methods: Fifty-six patients with a mean baseline LDL-cholesterol (LDL-C) concentration of 173.9 ± 40.5 mg/dL were treated with rosuvastatin 2.5 mg/day for 12 weeks. LDL-C, sdLDL-C, and apolipoprotein (apo) B were assessed and l lbLDL-C was calculated (LDL-C minus sdLDL-C). Results: After 12-week treatment with rosuvastatin 2.5mg, sdLDL-C and lbLDL-C were significantly reduced from 62.1 ± 23.8 mg/dL to 34.0 ± 13.4 mg/dL, p <0.001 and 112.7 ± 34.9 mg/dL to 77.2± 29.2 mg/dL, p < 0.001 respectively, and sdLDL-C/lbLDL-C ratio and apo B also decreased significantly, from 0.36 ± 0.02 to 0.32 ± 0.02, p < 0.005 and 134.2 ± 4.3 to 93.6 ± 3.5 mg/dl, p < 0.001, respectively. In diabetic subjects there was significant correlation between percent reductions in the plasma triglyceride and sdLDL-C/ lbLDL-C ratio (r = 0.58, p < 0.005), but not between the percentage decrease in plasma triglyceride and sdLDL-C. Conclusions: Treatment with rosuvastatin is associated with significant reduction in sdLDL, lbLDL and sdLDL/lbLDL ratio.
文摘Aims: There has been no evidence on the effects of evolocumab, protein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on small size LDL. We observationally investigated the efficacy and side effects of evolocumab on the LDL subfraction particle diameter using PAGE system for lipoprotein analysis. Methods: We defined 30 patients with high-risk hyperlipidemia. As for analysis of LDL subfraction profile, we used polyacrylamide gel electrophoresis three methods: 1) 3% nondenatured poly-acrylamide gel electrophoresis method (3%PAGE), 2) 2% - 16% nondenatured poly-acrylamide gradient gel electro-phoresis method (2% - 16% GGE) and 3) 2.7% - 5% GGE. Evolocumab 140 mg/day administered together with statin significantly improved serum total cholesterol (TC), triglyceride (TG), high-dense lipoprotein-cholesterol (HDL-C), and LDL-C after four-week treatment. Results: TC, TG, HDL-C and LDL-C levels were improved by, respectively, 33%, 20%, 10%, and 54%. The mean LDL size significantly increased from 25.6 ± 0.4 nm to 26.4 ± 0.8 nm. The small dense LDL-cholesterol (sdLDL-C), large buoyant LDL-cholesterol (lbLDL-C), and mid-band lipoprotein-cholesterol were reduced, respectively. Therefore, the preliminary study on this paper can be the first step into a new insight on the world of lipid metabolism. Conclusion: Short-term administration of evolocumab addedons to statin therapy, significantly reduced small size LDL levels.