提出了一种漂移区具有Nbuffer结构的N型横向扩散金属氧化物半导体(NLDMOS)结构,以提高器件抗单粒子烧毁(single-event burnout,SEB)能力。通过TCAD仿真验证了该结构的电学和抗单粒子特征。在不改变器件性能的前提下,18 V NLDMOS SEB触...提出了一种漂移区具有Nbuffer结构的N型横向扩散金属氧化物半导体(NLDMOS)结构,以提高器件抗单粒子烧毁(single-event burnout,SEB)能力。通过TCAD仿真验证了该结构的电学和抗单粒子特征。在不改变器件性能的前提下,18 V NLDMOS SEB触发电压由22 V提高到32 V,达到理论最大值,即器件雪崩击穿电压。具有Nbuffer结构的NLDMOS器件可以抑制单粒子入射使得器件寄生三极管开启时的峰值电场转移,避免器件雪崩击穿而导致SEB。此外,对于18~60 V NLDMOS器件的SEB加固,Nbuffer结构依然适用。展开更多
Silicon carbide(SiC),as a third-generation semiconductor material,possesses exceptional material properties that significantly enhance the performance of power devices.The SiC lateral double-diffused metal–oxide–sem...Silicon carbide(SiC),as a third-generation semiconductor material,possesses exceptional material properties that significantly enhance the performance of power devices.The SiC lateral double-diffused metal–oxide–semiconductor(LDMOS)power devices have undergone continuous optimization,resulting in an increase in breakdown voltage(BV)and ultra-low specific on-resistance(Ron,sp).This paper has summarized the structural optimizations and experimental progress of SiC LDMOS power devices,including the trench-gate technology,reduced surface field(RESURF)technology,doping technology,junction termination techniques and so on.The paper is aimed at enhancing the understanding of the operational mechanisms and providing guidelines for the further development of SiC LDMOS power devices.展开更多
电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软...电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软件基础退化模块进行仿真。由于仿真条件简单,难以覆盖工业芯片常见的复杂电磁脉冲环境,器件的可靠性寿命预期值与实际经验值之间相差巨大,导致芯片的稳定性很难得到精准评估。本研究结合期望最大算法和可靠性应力转化理论,在进行可靠性仿真前对复杂电磁脉冲信号进行预处理,降低整体电磁信号的复杂度,提高仿真效率,增强建模的可靠性。系列过程可作为电磁场仿真模块补充嵌入到主流的TCAD仿真软件,提高工业芯片器件可靠性仿真精准度。展开更多
文摘提出了一种漂移区具有Nbuffer结构的N型横向扩散金属氧化物半导体(NLDMOS)结构,以提高器件抗单粒子烧毁(single-event burnout,SEB)能力。通过TCAD仿真验证了该结构的电学和抗单粒子特征。在不改变器件性能的前提下,18 V NLDMOS SEB触发电压由22 V提高到32 V,达到理论最大值,即器件雪崩击穿电压。具有Nbuffer结构的NLDMOS器件可以抑制单粒子入射使得器件寄生三极管开启时的峰值电场转移,避免器件雪崩击穿而导致SEB。此外,对于18~60 V NLDMOS器件的SEB加固,Nbuffer结构依然适用。
基金supported by the National Natural Science Foundation of China(Grant No.62074080)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20211104 and BK20201206)the Jiangsu Provincial Key Research and Development Program(Grant No.BE2022126).
文摘Silicon carbide(SiC),as a third-generation semiconductor material,possesses exceptional material properties that significantly enhance the performance of power devices.The SiC lateral double-diffused metal–oxide–semiconductor(LDMOS)power devices have undergone continuous optimization,resulting in an increase in breakdown voltage(BV)and ultra-low specific on-resistance(Ron,sp).This paper has summarized the structural optimizations and experimental progress of SiC LDMOS power devices,including the trench-gate technology,reduced surface field(RESURF)technology,doping technology,junction termination techniques and so on.The paper is aimed at enhancing the understanding of the operational mechanisms and providing guidelines for the further development of SiC LDMOS power devices.
文摘电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软件基础退化模块进行仿真。由于仿真条件简单,难以覆盖工业芯片常见的复杂电磁脉冲环境,器件的可靠性寿命预期值与实际经验值之间相差巨大,导致芯片的稳定性很难得到精准评估。本研究结合期望最大算法和可靠性应力转化理论,在进行可靠性仿真前对复杂电磁脉冲信号进行预处理,降低整体电磁信号的复杂度,提高仿真效率,增强建模的可靠性。系列过程可作为电磁场仿真模块补充嵌入到主流的TCAD仿真软件,提高工业芯片器件可靠性仿真精准度。