PM2 gene (accession number: M80664) with high lysine content from soybean (Glycine max) was found in GenBank by changing three BLASTp parameters. Amino acid composition analysis of PM2 showed that Lys content was...PM2 gene (accession number: M80664) with high lysine content from soybean (Glycine max) was found in GenBank by changing three BLASTp parameters. Amino acid composition analysis of PM2 showed that Lys content was on the high level of 18.22%. Protein encoded by PM'2 also belonged to the family of late embryogenesis abundant (LEA) proteins, which was considered that it had a strong relation with the abiotic stress resistance. In this experiment, PM2 gene was obtained from dry soybean seeds by RT-PCR, plant expression vector pEMTPM2 was constructed, and then transformed into tobacco by using agrobacterium-mediated method. Eight salt and drought tolerant lines were obtained from 31 differentiated lines. Real-time PCR showed that PM2 gene overexpressed in all four PCR positive lines with the osmotic stress resistance. These results confirmed that the overexpression of PM2 gene enhanced the osmotic stress resistance of transgenic tobacco.展开更多
基金Supported by Key Program of Natural Science Foundation of Heilongjiang Province (ZJN03-5)
文摘PM2 gene (accession number: M80664) with high lysine content from soybean (Glycine max) was found in GenBank by changing three BLASTp parameters. Amino acid composition analysis of PM2 showed that Lys content was on the high level of 18.22%. Protein encoded by PM'2 also belonged to the family of late embryogenesis abundant (LEA) proteins, which was considered that it had a strong relation with the abiotic stress resistance. In this experiment, PM2 gene was obtained from dry soybean seeds by RT-PCR, plant expression vector pEMTPM2 was constructed, and then transformed into tobacco by using agrobacterium-mediated method. Eight salt and drought tolerant lines were obtained from 31 differentiated lines. Real-time PCR showed that PM2 gene overexpressed in all four PCR positive lines with the osmotic stress resistance. These results confirmed that the overexpression of PM2 gene enhanced the osmotic stress resistance of transgenic tobacco.