期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Effects of Light-Emitting Diode (LED) Red and Blue Light on the Growth and Photosynthetic Characteristics of <i>Momordica charantia</i>L. 被引量:1
1
作者 Guoli Wang Yongzhi Chen +1 位作者 Hongying Fan Ping Huang 《Journal of Agricultural Chemistry and Environment》 2021年第1期1-15,共15页
With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><s... With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span> 展开更多
关键词 light-emitting diode (led) Momordica charantia L. (Bitter Gourd) Photosynthetic Characteristics Light Response Curve Sex Differentiation
下载PDF
The strategies for preparing blue perovskite light-emitting diodes 被引量:4
2
作者 Jianxun Lu Zhanhua Wei 《Journal of Semiconductors》 EI CAS CSCD 2020年第5期26-33,共8页
Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties,and they find many promising applications in the optoelectronic fields of solar cells,light-emitting... Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties,and they find many promising applications in the optoelectronic fields of solar cells,light-emitting diodes,and photodetectors.Thanks to the contributions of international researchers,significant progress has been made for perovskite light-emitting diodes(Pero-LEDs).The external quantum efficiencies(EQEs)of Pero-LEDs with emission of green,red,and near-infrared have all exceeded 20%.However,the blue Pero-LEDs still lag due to the poor film quality and deficient device structure.Herein,we summarize the strategies for preparing blue-emitting perovskites and categorize them into two:compositional engineering and size controlling of the emitting units.The advantages and disadvantages of both strategies are discussed,and a perspective of preparing high-performance blue-emitting perovskite is proposed.The challenges and future directions of blue PeroLEDs fabrication are also discussed. 展开更多
关键词 PEROVSKITE blue light-emitting diodeS
下载PDF
Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter 被引量:1
3
作者 魏娜 郭坤平 +3 位作者 周朋超 于建宁 魏斌 张建华 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期727-731,共5页
We characterized the 6,12-bis{[N-(3,4-dimethylphenyl)-N-(2,4,5-trimethylphenyl)]amino} chrysene (BmPAC), which has been proven to be a blue fluorescent emission with high EL efficiency. The blue fluorescent devi... We characterized the 6,12-bis{[N-(3,4-dimethylphenyl)-N-(2,4,5-trimethylphenyl)]amino} chrysene (BmPAC), which has been proven to be a blue fluorescent emission with high EL efficiency. The blue fluorescent device exhibits good performance with an external quantum efficiency of 5.8% and current efficiency of 8.9 cd/A, respectively. Using BmPAC, we also demonstrate a hybrid phosphorescence/fluorescence white organic light-emitting device (WOLED) with high efficiency of 36.3 cd/A. In order to improve the relative intensity of blue light, we plus a blue light-emitting layer (BEML) in front of the orange light emitting layer (YEML) to take advantage of the excess singlet excitons. With the new emitting layer of BEML/YEML/BEML, we demonstrate the fluorescence/phosphorescence/fluorescence WOLED exhibits good performance with a current efficiency of 47 cd/A and an enhanced relative intensity of blue light. 展开更多
关键词 BmPAC high efficiency blue organic light emitting diodes white organic light-emitting diodes
下载PDF
High color rendering index white organic light-emitting diode using levofloxacin as blue emitter 被引量:1
4
作者 苗艳勤 高志翔 +5 位作者 张爱琴 李源浩 王华 贾虎生 刘旭光 Tsuboi Taiju 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期577-582,共6页
Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED conta... Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4'-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7- tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBE which are separated by a 20-nm-thick buffer layer of TPBi (2,2',2"-(benzene-1,3,5-triyl)-tri(1-phenyl-lH-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. 展开更多
关键词 LEVOFLOXACIN blue organic light emitting diodes white organic light-emitting diodes high color rendering index
下载PDF
Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes 被引量:1
5
作者 于建宁 张民艳 +4 位作者 李崇 尚玉柱 吕燕芳 魏斌 黄维 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期186-190,共5页
By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode wit... By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters. 展开更多
关键词 organic light-emitting diode blue emission LIFETIME organic layers thickness
下载PDF
Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer 被引量:1
6
作者 丁彬彬 赵芳 +9 位作者 宋晶晶 熊建勇 郑树文 张运炎 许毅钦 周德涛 喻晓鹏 张瀚翔 张涛 范广涵 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期721-725,共5页
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically,... Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used. 展开更多
关键词 p-A1GaN electron blocking layer (EBL) n-A1GaN hole blocking layer (HBL) numerical simula-tion InGaN light-emitting diode led
下载PDF
Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer
7
作者 于倩倩 张旭 +5 位作者 毕敬萱 刘冠廷 张棋雯 吴晓明 华玉林 印寿根 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期146-150,共5页
We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4- phenylphenolato)Muminum (BAlq) inserted between the emitting layer (EML) and the electron transpor... We report that a novel exciton feedback effect is observed by introducing the bis(2-methyl-8-quinolinolato)(4- phenylphenolato)Muminum (BAlq) inserted between the emitting layer (EML) and the electron transporting layer in blue organic light emitting diodes. As an exciton feedback layer (EFL), the BAlq does not act as a traditional hole blocking effect. The design of this kind of device structure can greatly reduce excitons' quenching due to accumulated space charge at the exciton formation interface. Meanwhile, the non-radiative energy transfer from EFL to the EML can also be utilized to enhance the excitons' formation, which is confirmed by the test of photolumimescent transient lifetime decay and electroluminescence enhancement of these devices. Accordingly, the optimal device presents the improved performances with the maximum current efficiency of 4.2 cd/A and the luminance of 24600cd/m2, which are about 1.45 times and 1.75 times higher than those of device A (control device) without the EFL, respectively. Simultaneously, the device shows an excellent color stability with a tiny offset of the CIE coordinates (△x = ±0.003, △y = ±0.004) and a relatively lower efficiency roll-off of 26.2% under the driving voltage varying from 3 V to 10 V. 展开更多
关键词 of in with is as Efficiency of blue Organic light-emitting diodes Enhanced by Employing an Exciton Feedback Layer EFL Oleds EML NPB by
下载PDF
A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode
8
作者 汪莱 孟骁 +9 位作者 Jung-Hoon Song Tae-Soo Kim Seung-Young Lim 郝智彪 罗毅 孙长征 韩彦军 熊兵 王健 李洪涛 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期107-109,共3页
We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obt... We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency-current and carrier lifetime-current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is 1.0x10(-31) cm(6)s(-1) in the present sample, which contributes slightly to efficiency droop effect. 展开更多
关键词 InGaN A Method to Obtain Auger Recombination Coefficient in an InGaN-Based blue light-emitting diode CIE
下载PDF
Multiple-resonance thermally activated delayed emitters through multiple peripheral modulation to enable efficient blue OLEDs at high doping levels
9
作者 Yuyuan Wang Zhiwei Ma +7 位作者 Junrong Pu Danman Guo Gaoyu Li Zhu Chen Shi-Jian Su Huangjun Deng Juan Zhao Zhenguo Chi 《Aggregate》 EI CAS 2024年第5期349-357,共9页
Organic light-emitting diodes(OLEDs)based on multiple resonance-thermallyactivated delayedfluorescence(MR-TADF)have the advantages of high excitonutilization and excellent color purity.However,the large conjugated plan... Organic light-emitting diodes(OLEDs)based on multiple resonance-thermallyactivated delayedfluorescence(MR-TADF)have the advantages of high excitonutilization and excellent color purity.However,the large conjugated planarity of gen-eral MR-TADF emitters makes them easily aggregate in the form ofπ–πstacking,resulting in aggregation-caused quenching(ACQ)and the formation of excimers,which reduce exciton utilization efficiency and color purity.To address these issues,large shielding units can be incorporated to prevent interchromophore interactions,whereas the majority of reported molecules are limited to blue-green light emis-sions.This work proposes a strategy of incorporating steric hindrance groups atdifferent sites of the B/N core to suppress interactions between chromophore,con-tributing to blue MR-TADF emitters with high photo-luminance quantum yields(PLQYs≥95%)and narrow full width at half maximum(FWHM),and importantly,great suppression of the ACQ effect.Therefore,blue OLEDs achieve high externalquantum efficiencies up to 34.3%and high color purity with FWHM of about 27 nmand CIE around(0.12,0.15),even at a high doping concentration of 20 wt%. 展开更多
关键词 blue emission color purity multiple-resonance organic light-emitting diodes thermally activated delayedfluorescence
原文传递
Structure and luminescence of Ca_2Si_5N_8:Eu^(2+) phosphor for warm white light-emitting diodes 被引量:1
10
作者 魏小丹 蔡丽艳 +3 位作者 鲁法春 陈小龙 陈学元 刘泉林 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3555-3562,共8页
We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that... We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu^2+ phosphor shows a broad red emission band centred at -1.97 eV-2.01 eV. The gravity centre of the excitation band is located at 3.0 eV 3.31 eV. The centroid shift of the 5d levels of Eu^2+ is determined to be -1.17 eV, and the red-shift of the lowest absorption band to be - 0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang-Rhys parameter S = 6.0, the phonon energy hv = 52 meV, and the Stokes shift △S = 0.57 eV are obtained. The emission intensity maximum occurring at -200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process. 展开更多
关键词 LUMINESCENCE STRUCTURE NITRIDE EUROPIUM white light-emitting diode led
下载PDF
Enhancement in Light Extraction Efficiency of GaN-Based Light-Emitting Diodes Using Double Dielectric Surface Passivation 被引量:1
11
作者 Chung-Mo Yang Dong-Seok Kim +3 位作者 Yun Soo Park Jae-Hoon Lee Yong Soo Lee Jung-Hee Lee 《Optics and Photonics Journal》 2012年第3期185-192,共8页
SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output p... SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface. 展开更多
关键词 GaN light-emitting diode (led) AL2O3 PEALD PASSIVATION DOUBLE Dielectric STACK Layer
下载PDF
Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
12
作者 Yan-Li Wang Pei-Xian Li +8 位作者 Sheng-Rui Xu Xiao-Wei Zhou Xin-Yu Zhang Si-Yu Jiang Ru-Xue Huang Yang Liu Ya-Li Zi Jin-Xing Wu Yue Hao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期381-385,共5页
The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-peri... The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice(SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the ptype regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5%and 37.9% in the output power and external quantum efficiency at 120 m A appear in the device with double superlattice structure. 展开更多
关键词 light-emitting diodes(leds) electron BLOCKING layer(EBL) SUPERLATTICES
下载PDF
The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes
13
作者 戴峰 郑雪峰 +5 位作者 李培咸 侯晓慧 王颖哲 曹艳荣 马晓华 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期92-95,共4页
The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms,... The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole-Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05eV, 0.09eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs. 展开更多
关键词 ledS UV IS of The Transport Mechanisms of Reverse Leakage Current in Ultraviolet light-emitting diodes INGAN in
下载PDF
Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes
14
作者 张宁 魏学成 +6 位作者 路坤熠 冯梁森 杨杰 薛斌 刘喆 李晋闽 王军喜 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期96-98,共3页
The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelen... The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved. 展开更多
关键词 leds in it as InGaN Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green light-emitting diodes of on
下载PDF
Design of patterned sapphire substrates for GaN-based light-emitting diodes
15
作者 王海燕 林志霆 +2 位作者 韩晶磊 钟立义 李国强 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期17-24,共8页
A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complic... A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years. 展开更多
关键词 light-emitting diode led patterned sapphire substrate (PSS) pattern design computer simula-tion
下载PDF
Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer
16
作者 喻晓鹏 范广涵 +4 位作者 丁彬彬 熊建勇 肖瑶 张涛 郑树文 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期557-560,共4页
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior opt... The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. 展开更多
关键词 InGaN light-emitting diodes leds) p-InA1GaN hole injection layer (HIL) numerical simulation
下载PDF
Pterygium associated with light-emitting diode use:a case report
17
作者 Fiona S.Lau Stephanie L.Watson Kenneth Gek-Jin Ooi 《Annals of Eye Science》 2022年第4期65-68,共4页
Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pter... Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pterygium associated with indoor occupational light-emitting diode(LED)exposure not previously described in the literature.Case Description:A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed.This was excised routinely with conjunctival autografting to the defect.Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.Conclusions:The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum.Given the increasing reliance on LED light sources in modern life,ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium.Appropriate UV protection counselling for these types of lights may also now need to be considered. 展开更多
关键词 PTERYGIUM light-emitting diode(led) ultraviolet light damage ocular surface disease case report
下载PDF
Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure 被引量:6
18
作者 Zongtao Li Kai Cao +3 位作者 Jiasheng Li Yong Tang Xinrui Ding Binhai Yu 《Opto-Electronic Advances》 SCIE 2021年第2期19-47,共29页
Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red... Perovskite light emitting diodes(PeLEDs)have attracted considerable research attention because of their external quantum efficiency(EQE)of>20%and have potential scope for further improvement.However,compared to red and green PeLEDs,blue PeLEDs have not been extensively investigated,which limits their commercial applications in the fields of luminance and full-color displays.In this review,blue-PeLED-related research is categorized by the composition of perovskite.The main challenges and corresponding optimization strategies for perovskite films are summarized.Next,the novel strategies for the design of device structures of blue PeLEDs are reviewed from the perspective of transport layers and interfacial layers.Accordingly,future directions for blue PeLEDs are discussed.This review can be a guideline for optimizing perovskite film and device structure of blue PeLEDs,thereby enhancing their development and application scope. 展开更多
关键词 perovskite light emitting diodes perovskite film device structure blue leds
下载PDF
980 nm Near-Infrared Light-Emitting Diode Using All-Inorganic Perovskite Nanocrystals Doped with Ytterbium Ions
19
作者 Zhenglan Ye Taoran Liu +8 位作者 Dan Chen Yazhou Yang Jiayi Li Yaqing Pang Xiangquan Liu Yuhua Zuo Jun Zheng Zhi Liu Buwen Cheng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期207-215,共9页
All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-E... All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-Emitting Diode(LED)is limited to the visible region(400-700 nm).A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region.In this work,a 980 nm NIR all-inorganic perovskite NC LED is demonstrated,which is based on an efficient energy transfer from wide-bandgap materials(CsPbCl3 NCs)to ytterbium ions(Yb3+)as an NIR emitter doped in perovskite NCs.The optimized CsPbCl3 NC with 15 mol%Yb3+doping concentration has the strongest 980 nm photoluminescence(PL)peak,with a PL quantum yield of 63%.An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT:PSS/poly-TPD/CsPbCl3:15 mol%Yb3+NCs/TPBi/LiF/Al.The LED has an External Quantum Efficiency(EQE)of 0.2%,a Full Width at Half Maximum(FWHM)of 47 nm,and a maximum luminescence of 182 cd/m?.The introduction of Yb3+doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration. 展开更多
关键词 perovskite nanocrystals rare-earth doping light-emitting diode(led) NEAR-INFRARED optical interconnection
原文传递
Developments and challenges ahead in blue perovskite light-emitting devices
20
作者 Lin Zhang Run Long 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期418-433,I0011,共17页
Recently,perovskite light-emitting diodes(Pe LEDs)have developed rapidly in the green,red,and nearinfrared light emissions,owing to the unique optoelectronic characteristics of halide perovskites,such as high carrier ... Recently,perovskite light-emitting diodes(Pe LEDs)have developed rapidly in the green,red,and nearinfrared light emissions,owing to the unique optoelectronic characteristics of halide perovskites,such as high carrier mobility,narrow emission linewidths,high photoluminescence quantum yield,as well as bandgap tunability.However,the efficiency improvement in blue(especially deep-blue)Pe LEDs is still inferior to other analogs,which severely restricts the Pe LED applications.Here,we systematically summarize the substantial progress in the performance of blue Pe LEDs based on different blue perovskite candidates,and recent advances from three aspects(i.e.,the sky-blue,pure-blue,and deep-blue light emissions).Then,we point out several challenges existing in deep-blue Pe LEDs,such as the effect of Cl-ions incorporation,spectral instability,ion migration,and the difficulty of charge injection,and highlight the strategies to improve device efficiency,to motivate further research and development of blue Pe LEDs. 展开更多
关键词 PEROVSKITE blue emission light-emitting diodes Stability Efficiency
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部