Carbon nanotubes (CNTs) are synthesized from methane and hydrogen gas mixture directly on stainless steel plates by microwave plasma chemical vapor deposition (MWPCVD).By varying pretreatment conditions of the substra...Carbon nanotubes (CNTs) are synthesized from methane and hydrogen gas mixture directly on stainless steel plates by microwave plasma chemical vapor deposition (MWPCVD).By varying pretreatment conditions of the substrates such as mechanically polishing and acid washing,it is found the polishing and acid washing can lower the turn-on field and improve the emission current density.The current density of the un-pretreated sample attains 1.2mA/cm 2,but the polished sample and polished acidly washed sample attain 3.2 and 2.75mA/cm 2,respectively,at the electric field of 6.25V/μm.展开更多
A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were gro...A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were ground with Fe-doped SiO2 powder. The nano-structure of the deposited films was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The field electron emission characteristics of the chain-like carbon nanotube films were measured under the vacuum of 10-5 Pa. The low turn-on field of 0.80 V/μm and the emission current density of 8.5 mA/cm2 at the electric field of 3.0 V/μm are obtained. Based on the above results, chain-like carbon nanotube films probably have important applications in cold cathode materials and electrode materials.展开更多
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films...A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.展开更多
An effective method by low energy carbonhydrogen ion treatment to enhance field emission of the carbon nanotubes (CNTs) is demonstrated. Comparing with control, field emission (FE) currents of the CNTs by carbonhydrog...An effective method by low energy carbonhydrogen ion treatment to enhance field emission of the carbon nanotubes (CNTs) is demonstrated. Comparing with control, field emission (FE) currents of the CNTs by carbonhydrogen ion irradiation increased, and the turn-on field and the threshold field decreased significantly. The structure characteristic revealed by transmission electron microscopy demonstrates that CNTs are coated by nano-graphite particles after being treated with low energy carbonhydrogen ion and that there are large quantities of defects and grain boundaries in the coated layer. It is considered that the coating layer can decrease the effective surface work function of CNTs and correspondingly increase field emission. In addition, the defects, the grain boundaries and the C-H dipoles forming in the process of the low energy ions irradiation can effectively enhance the field emission.展开更多
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth pr...Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results.展开更多
The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission ca...The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.展开更多
Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches. The FEM pattern, which is composed of three parallel streaks, ca...Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches. The FEM pattern, which is composed of three parallel streaks, can be interpreted by using classical Young's double-slit interference with the ends of the two MWCNT branches treated as two secondary sources of the electron wave. The origin of the coherency of the electron beams from the two branches is discussed on the basis of the quantitative analysis of the FEM pattern. The result suggests a new approach to obtaining a coherent electron source.展开更多
The influences of density and dimension of carbon nanotubes on their electron emission from arrays are studied. The tip electric field of nanotubes, electric field enhancement factor, and optimum nanotube density are ...The influences of density and dimension of carbon nanotubes on their electron emission from arrays are studied. The tip electric field of nanotubes, electric field enhancement factor, and optimum nanotube density are expressed by analytic equations. The theoretical analyses show that the field enhancement factor is sensitive to nanotube density, and can be sharply improved at a specific and optimum density. Some experiments have demonstrated these. Owning to electrostatic screening effect, the length of carbon nanotubes has little effect on their emission. A uniformly-distributed carbon nanotube array model is set up, and applied to analysis of carbon nanotube arrays. The results obtained here are in good agreement with the experimental data.展开更多
Carbon nanowire (CNW)-singlewalled carbon nanotube (SWCNT) networks hybrid films with a large area (~400 mm2) are grown on molybdenum (Mo) layers by microwave plasma chemical vapour deposition system. The Mo layers, w...Carbon nanowire (CNW)-singlewalled carbon nanotube (SWCNT) networks hybrid films with a large area (~400 mm2) are grown on molybdenum (Mo) layers by microwave plasma chemical vapour deposition system. The Mo layers, which were deposited on Al2O3 ceramic substrates through electron beam evaporation deposition, were pretreated by a laser-grooving (LG) technology. Furthermore, the surface morphology, micro-structure and field emission properties of these samples are characterized by scanning electron microscope, Raman spectra, and field emission I - V measurements. ACNW-SWCNT networks hybrid film was formed in the surface of Mo layer, but the laser etched area (linear pits array area) the distribution of the CNW-SWCNT networks density is lower than the un-etched area CNW-SWCNT networks distribution density. The diameter of the CNWs and SWCNTs, respectively in the 8 - 15 nm and 0.9 - 1.5 nm range, and the length of CNW-SWCNTs ranges from 1 μm to 4 μm. The growth mechanisms of the films were discussed. Effects of LG pretreatment on surface morphologies and microstructure of the hybrid films were investigated. The field electron emission experimental results shown that the ture on field as low as 1.6 V/μm, and a current density of 0.15 mA/cm2 at an electric field of 4.3 V/μm was obtained.展开更多
A fringelike field emission with high-luminescence and stable emission current from screen-printed carbon nanotube mixed zinc oxide (CNT-ZnO) composite cathode was investigated. The luminescent patterns are significan...A fringelike field emission with high-luminescence and stable emission current from screen-printed carbon nanotube mixed zinc oxide (CNT-ZnO) composite cathode was investigated. The luminescent patterns are significantly different from those observed in the field emission measure of pure CNT cathode. SEM images reveal that the CNTs are perfectly matched with ZnO powders by filling the interspaces in CNT film. XRD analysis demonstrates that the CNTs and ZnO have a high degree of crystalline perfection. Field emission measurement exhibits that the turn-on field of CNT-ZnO cathode is 2.08 V/μm, lower than 2.46 V/μm for pure CNT cathode. The large fringelike emission current at the brims of CNT-ZnO cathode is attributed to a combination of the increased effective contact area of CNTs, which decrease the sheet resistance of cathode film, and the dangled CNT bundles at the brims of CNT-ZnO film cathode.展开更多
A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flo...A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flow rates of 100 and 16sccm,respectively,with a total pressure of 5.0kPa. The surface morphology and the structure of the films were characterized by field emission scanning electron microscopy (SEM) and Raman scattering spectroscopy. Field emission properties of as-deposited film were measured in a vacuum room below 5 ×10^ 5 Pa. The experimental results show that the initial turn-on field is 0. 9V/μm; The current density is 4.0mA/cm2 and the emission sites are dense and uniform at an electric field of 3.7V/μm. These results indicate that such a mixture of amorphous carbon and carbon nanotubes films is a promising material for field emission applications.展开更多
A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate...A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and the emission electron beam becomes a column. The field enhancement factor and the emission current intensity step up greatly compared with those of the diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.展开更多
The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indica...The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.展开更多
A novel magnetically controlled Ni-plating method has been developed to improve the field-emission properties of carbon nanotubes (CNTs). The effect of the magnetic field and Ni-electroplating on CNT field-emission ...A novel magnetically controlled Ni-plating method has been developed to improve the field-emission properties of carbon nanotubes (CNTs). The effect of the magnetic field and Ni-electroplating on CNT field-emission properties was investigated, and the results are demonstrated using scanning electron microscopy, J-E and the duration test. After treatment, the turn-on electric field declines from 1.55 to 0.91 V/μm at an emission current density of 100μA/cm2, and the emission current density increases from 0.011 to 0.34 mA/cm2 at an electric field of 1.0 V/μm. Both the brightness and uniformity of the CNT emission performance are improved after treatment.展开更多
Experimental investigations on the vacuum outgassing of a carbon nanotube (CNT) cathode with high-intensity pulsed electron emission on a 2 MeV linear induction accelerator injector are presented. Under the 1.60 MV ...Experimental investigations on the vacuum outgassing of a carbon nanotube (CNT) cathode with high-intensity pulsed electron emission on a 2 MeV linear induction accelerator injector are presented. Under the 1.60 MV diode voltage, the CNT cathode could provide 1.67 kA electron beam with the amount of outgassing of about 0.51 Pa.L. It is found that the amount of outgassing, which determines the cathode emission current, depends on the diode voltage and the vacuum.展开更多
Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scan...Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scanning electron microscopy,energy dispersive X-ray spectroscopy,J-E and F-N plots.After the treatment,the CNT cathodes showed improved field emission properties such as turn-on field,threshold electric field,current density,stability and luminescence uniformity.Concretely,the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm^2,and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm^2.The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm.In addition,the current density of the CNT cathodes fluctuated at around 0.7 mA/cm^2 for 20 h,with an initial current density 0.75 mA/cm^2.The improvement in field emission properties was found to be due to the exposure of more CNT tips,the wider gaps among the CNTs and the infiltration of nickel particles.展开更多
Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confir...Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.展开更多
Carbon nanotubes(CNTs)were grown into anodic aluminum oxide(AAO)channels by chemical vapor deposition(CVD)using C2H2/N2mixtures as feeding gas,which can be used as field emitters.The bottom surface of AAO template was...Carbon nanotubes(CNTs)were grown into anodic aluminum oxide(AAO)channels by chemical vapor deposition(CVD)using C2H2/N2mixtures as feeding gas,which can be used as field emitters.The bottom surface of AAO template was etched slightly and the tips of CNTs were explored as the field emission arrays which were uniform and vertical.Field emission characterization showed a low turn-on field about 3.25 V/m and high emission current about 30 mA/cm2with the electric field about 4 V/m.These superior field emission characteristics could be attributed to low density of vertical CNTs and higher conductivity of the substrate.展开更多
The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage ...The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage and that the top of carbon nanotubes with multi-layered graphite structure were transformed into carbon nanowires with amorphous structure.Meanwhile,C:Zn solid solution was synthesized after Zn+ implantation.The turn-on field and threshold field were 0.80 and 1.31 V/μm,respectively for original multi-walled carbon nanotube arrays and were reduced to 0.66 and 1.04 V/μm due to the synthesis of C and Zn composite,in which the work function was reduced after low doses of Zn+implantation.It is indicated that low doses of Zn+implantation can improve field emission performance of multi-walled carbon nanotube arrays.Otherwise,high doses of Zn+implantation can reduce field emission properties of multi-walled carbon nanotube arrays,because radiation damage reduces the electric field enhancement factor.展开更多
Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and...Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and chemical vapor deposition of carbon in the cylindrical pores of AAO. Here we show that template-synthesized CNTs can be fabricated as well-aligned nanoporous CNTs membrane, which can be directly used as an electron field emitter. A low threshold electric field of 2-4 V/μm and maximum emission current density of ~12 mA/cm2 are observed. The results also show that the electron emission current is a function of the applied electrical field and the Fowler-Nordheim (F-N) plot almost follows a linear relationship which indicates a Fowler-Nordheim tunneling mechanism, and the field enhancement factor estimated is about 1100-7500. The simple and convenient approach should be significant for the development of nanotube devices integrated into field emission displays (FEDs) technology.展开更多
文摘Carbon nanotubes (CNTs) are synthesized from methane and hydrogen gas mixture directly on stainless steel plates by microwave plasma chemical vapor deposition (MWPCVD).By varying pretreatment conditions of the substrates such as mechanically polishing and acid washing,it is found the polishing and acid washing can lower the turn-on field and improve the emission current density.The current density of the un-pretreated sample attains 1.2mA/cm 2,but the polished sample and polished acidly washed sample attain 3.2 and 2.75mA/cm 2,respectively,at the electric field of 6.25V/μm.
文摘A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were ground with Fe-doped SiO2 powder. The nano-structure of the deposited films was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The field electron emission characteristics of the chain-like carbon nanotube films were measured under the vacuum of 10-5 Pa. The low turn-on field of 0.80 V/μm and the emission current density of 8.5 mA/cm2 at the electric field of 3.0 V/μm are obtained. Based on the above results, chain-like carbon nanotube films probably have important applications in cold cathode materials and electrode materials.
文摘A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.
基金a Key Program of the Knowledge Innovation Project of Chinese Academy of Sciences, National Natural Science Foundation of China (Grant No.10375085)National Basic Research Program of China (Grant No.2003CB716901)
文摘An effective method by low energy carbonhydrogen ion treatment to enhance field emission of the carbon nanotubes (CNTs) is demonstrated. Comparing with control, field emission (FE) currents of the CNTs by carbonhydrogen ion irradiation increased, and the turn-on field and the threshold field decreased significantly. The structure characteristic revealed by transmission electron microscopy demonstrates that CNTs are coated by nano-graphite particles after being treated with low energy carbonhydrogen ion and that there are large quantities of defects and grain boundaries in the coated layer. It is considered that the coating layer can decrease the effective surface work function of CNTs and correspondingly increase field emission. In addition, the defects, the grain boundaries and the C-H dipoles forming in the process of the low energy ions irradiation can effectively enhance the field emission.
基金supported by the National Natural Science Foundation of China(Grant Nos.91123018,61172040,and 61172041)the Natural Science Foundation of Shaanxi Province,China(Grant No.2014JM7277)
文摘Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305263 and 61401484)
文摘The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.
基金supported by the National Natural Science Foundation of China (Grant No 60771004)the Ministry of Science and Technology of the People’s Republic of China (Grant No 2006CB932402)
文摘Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches. The FEM pattern, which is composed of three parallel streaks, can be interpreted by using classical Young's double-slit interference with the ends of the two MWCNT branches treated as two secondary sources of the electron wave. The origin of the coherency of the electron beams from the two branches is discussed on the basis of the quantitative analysis of the FEM pattern. The result suggests a new approach to obtaining a coherent electron source.
文摘The influences of density and dimension of carbon nanotubes on their electron emission from arrays are studied. The tip electric field of nanotubes, electric field enhancement factor, and optimum nanotube density are expressed by analytic equations. The theoretical analyses show that the field enhancement factor is sensitive to nanotube density, and can be sharply improved at a specific and optimum density. Some experiments have demonstrated these. Owning to electrostatic screening effect, the length of carbon nanotubes has little effect on their emission. A uniformly-distributed carbon nanotube array model is set up, and applied to analysis of carbon nanotube arrays. The results obtained here are in good agreement with the experimental data.
文摘Carbon nanowire (CNW)-singlewalled carbon nanotube (SWCNT) networks hybrid films with a large area (~400 mm2) are grown on molybdenum (Mo) layers by microwave plasma chemical vapour deposition system. The Mo layers, which were deposited on Al2O3 ceramic substrates through electron beam evaporation deposition, were pretreated by a laser-grooving (LG) technology. Furthermore, the surface morphology, micro-structure and field emission properties of these samples are characterized by scanning electron microscope, Raman spectra, and field emission I - V measurements. ACNW-SWCNT networks hybrid film was formed in the surface of Mo layer, but the laser etched area (linear pits array area) the distribution of the CNW-SWCNT networks density is lower than the un-etched area CNW-SWCNT networks distribution density. The diameter of the CNWs and SWCNTs, respectively in the 8 - 15 nm and 0.9 - 1.5 nm range, and the length of CNW-SWCNTs ranges from 1 μm to 4 μm. The growth mechanisms of the films were discussed. Effects of LG pretreatment on surface morphologies and microstructure of the hybrid films were investigated. The field electron emission experimental results shown that the ture on field as low as 1.6 V/μm, and a current density of 0.15 mA/cm2 at an electric field of 4.3 V/μm was obtained.
文摘A fringelike field emission with high-luminescence and stable emission current from screen-printed carbon nanotube mixed zinc oxide (CNT-ZnO) composite cathode was investigated. The luminescent patterns are significantly different from those observed in the field emission measure of pure CNT cathode. SEM images reveal that the CNTs are perfectly matched with ZnO powders by filling the interspaces in CNT film. XRD analysis demonstrates that the CNTs and ZnO have a high degree of crystalline perfection. Field emission measurement exhibits that the turn-on field of CNT-ZnO cathode is 2.08 V/μm, lower than 2.46 V/μm for pure CNT cathode. The large fringelike emission current at the brims of CNT-ZnO cathode is attributed to a combination of the increased effective contact area of CNTs, which decrease the sheet resistance of cathode film, and the dangled CNT bundles at the brims of CNT-ZnO film cathode.
文摘A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flow rates of 100 and 16sccm,respectively,with a total pressure of 5.0kPa. The surface morphology and the structure of the films were characterized by field emission scanning electron microscopy (SEM) and Raman scattering spectroscopy. Field emission properties of as-deposited film were measured in a vacuum room below 5 ×10^ 5 Pa. The experimental results show that the initial turn-on field is 0. 9V/μm; The current density is 4.0mA/cm2 and the emission sites are dense and uniform at an electric field of 3.7V/μm. These results indicate that such a mixture of amorphous carbon and carbon nanotubes films is a promising material for field emission applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50873047)the Foundation of Gansu Provincial Education Department,China (Grant No. 0603-02)
文摘A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and the emission electron beam becomes a column. The field enhancement factor and the emission current intensity step up greatly compared with those of the diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant Nos.21031001 and U1034003)the National Natural Science Foundation of China(Grant Nos.20971040 and 21173072)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708029)
文摘The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03A313)the Natural Science Foundation of Fujian Province of China (Grant No. 2009J05145)
文摘A novel magnetically controlled Ni-plating method has been developed to improve the field-emission properties of carbon nanotubes (CNTs). The effect of the magnetic field and Ni-electroplating on CNT field-emission properties was investigated, and the results are demonstrated using scanning electron microscopy, J-E and the duration test. After treatment, the turn-on electric field declines from 1.55 to 0.91 V/μm at an emission current density of 100μA/cm2, and the emission current density increases from 0.011 to 0.34 mA/cm2 at an electric field of 1.0 V/μm. Both the brightness and uniformity of the CNT emission performance are improved after treatment.
文摘Experimental investigations on the vacuum outgassing of a carbon nanotube (CNT) cathode with high-intensity pulsed electron emission on a 2 MeV linear induction accelerator injector are presented. Under the 1.60 MV diode voltage, the CNT cathode could provide 1.67 kA electron beam with the amount of outgassing of about 0.51 Pa.L. It is found that the amount of outgassing, which determines the cathode emission current, depends on the diode voltage and the vacuum.
基金Project supported by the National High Technology Research and Development Program of China(No.2008AA03A313)the National Natural Science Foundation of China(No.61106053)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20103514110007)
文摘Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scanning electron microscopy,energy dispersive X-ray spectroscopy,J-E and F-N plots.After the treatment,the CNT cathodes showed improved field emission properties such as turn-on field,threshold electric field,current density,stability and luminescence uniformity.Concretely,the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm^2,and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm^2.The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm.In addition,the current density of the CNT cathodes fluctuated at around 0.7 mA/cm^2 for 20 h,with an initial current density 0.75 mA/cm^2.The improvement in field emission properties was found to be due to the exposure of more CNT tips,the wider gaps among the CNTs and the infiltration of nickel particles.
基金the National Natural Science Foundation of China(Grant Nos.69890221 and 69971003)the MOST of China(No.2001CB610503)+1 种基金Key Foundation for Science and Technology Research of Education Ministry of China(No.00005)Scientific Research Foundation for Returned Oversea Chinese Scholars,State Education Commission
文摘Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.
基金supported by China National Funds for Distinguished Young Scientists(Grant No.61125101)the Science and Technology on Vacuum&Cryogenics Technology and Physics Laboratory
文摘Carbon nanotubes(CNTs)were grown into anodic aluminum oxide(AAO)channels by chemical vapor deposition(CVD)using C2H2/N2mixtures as feeding gas,which can be used as field emitters.The bottom surface of AAO template was etched slightly and the tips of CNTs were explored as the field emission arrays which were uniform and vertical.Field emission characterization showed a low turn-on field about 3.25 V/m and high emission current about 30 mA/cm2with the electric field about 4 V/m.These superior field emission characteristics could be attributed to low density of vertical CNTs and higher conductivity of the substrate.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2010CB832905)the National Natural Science Foundation of China(Grant No.10575011)the Key Scientific and Technological Project of Ministry of Education of China(Grant No.108124)
文摘The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage and that the top of carbon nanotubes with multi-layered graphite structure were transformed into carbon nanowires with amorphous structure.Meanwhile,C:Zn solid solution was synthesized after Zn+ implantation.The turn-on field and threshold field were 0.80 and 1.31 V/μm,respectively for original multi-walled carbon nanotube arrays and were reduced to 0.66 and 1.04 V/μm due to the synthesis of C and Zn composite,in which the work function was reduced after low doses of Zn+implantation.It is indicated that low doses of Zn+implantation can improve field emission performance of multi-walled carbon nanotube arrays.Otherwise,high doses of Zn+implantation can reduce field emission properties of multi-walled carbon nanotube arrays,because radiation damage reduces the electric field enhancement factor.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69890220) .
文摘Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and chemical vapor deposition of carbon in the cylindrical pores of AAO. Here we show that template-synthesized CNTs can be fabricated as well-aligned nanoporous CNTs membrane, which can be directly used as an electron field emitter. A low threshold electric field of 2-4 V/μm and maximum emission current density of ~12 mA/cm2 are observed. The results also show that the electron emission current is a function of the applied electrical field and the Fowler-Nordheim (F-N) plot almost follows a linear relationship which indicates a Fowler-Nordheim tunneling mechanism, and the field enhancement factor estimated is about 1100-7500. The simple and convenient approach should be significant for the development of nanotube devices integrated into field emission displays (FEDs) technology.