期刊文献+
共找到498篇文章
< 1 2 25 >
每页显示 20 50 100
一种基于神经网络的LFMCW雷达目标距离提取方法 被引量:2
1
作者 李阳 黄敬禹 冯正和 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2000年第6期425-429,共5页
根据 L FMCW系统的特点 ,提出了一种通过对信号自相关矩阵进行秩 - 1分解的方法来替代传统的 FFT方法 ,以实现对目标距离的超分辨提取 .通过应用 Hopfield神经网络能量函数变换 ,将分解问题转化为一个简单的迭代问题来求解 .文中通过计... 根据 L FMCW系统的特点 ,提出了一种通过对信号自相关矩阵进行秩 - 1分解的方法来替代传统的 FFT方法 ,以实现对目标距离的超分辨提取 .通过应用 Hopfield神经网络能量函数变换 ,将分解问题转化为一个简单的迭代问题来求解 .文中通过计算机仿真和硬件系统的实际测试研究了它的性能 ,并与 MUSIC、最大熵等其它谱估计方法做了比较 ,结果表明该方法具有更好的信噪比和分辨性能 . 展开更多
关键词 线性调频连续波 神经网络 lfmcw系统 连续波雷达 目标提取 距离分辨率 信噪比 分辨性能
下载PDF
Radial Basis Function Neural Network Based Super- Resolution Restoration for an Undersampled Image 被引量:1
2
作者 苏秉华 金伟其 牛丽红 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期135-138,共4页
To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolu... To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network. 展开更多
关键词 super-resolution image restoration image processing neural networks UNDERSAMPLING
下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
3
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction super-resolution three-steptraining neural network BP algorithm vector mapping.
下载PDF
Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
4
作者 Zhongxian Men Eugene Yee +2 位作者 Fue-Sang Lien Hua Ji Yongqian Liu 《Energy and Power Engineering》 2014年第11期340-348,共9页
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m... The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China. 展开更多
关键词 artificial neural network BOOTSTRAP RESAMPLING Numerical Weather Prediction super-Ensemble Wind Speed Power Forecasting
下载PDF
Performance Evaluation of Super-Resolution Methods Using Deep-Learning and Sparse-Coding for Improving the Image Quality of Magnified Images in Chest Radiographs
5
作者 Kensuke Umehara Junko Ota +4 位作者 Naoki Ishimaru Shunsuke Ohno Kentaro Okamoto Takanori Suzuki Takayuki Ishida 《Open Journal of Medical Imaging》 2017年第3期100-111,共12页
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed... Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed. 展开更多
关键词 Deep LEARNING super-resolution super-resolution Convolutional neural network (SRCNN) Sparse-Coding super-resolution (ScSR) CHEST X-Ray
下载PDF
Super-Resolution Stress Imaging for Terahertz-Elastic Based on SRCNN
6
作者 Delin Liu Zhen Zhen +4 位作者 Yufen Du Ka Kang Haonan Zhao Chuanwei Li Zhiyong Wang 《Optics and Photonics Journal》 CAS 2022年第11期253-268,共16页
Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz im... Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained. 展开更多
关键词 THZ-TDS Stress Measurement super-resolution Convolutional neural network
下载PDF
基于Super SAB神经网络算法的主变压器故障诊断模型 被引量:12
7
作者 章剑光 周浩 项灿芳 《电工技术学报》 EI CSCD 北大核心 2004年第7期49-52,58,共5页
人工神经网络(ANN)由于其高度的非线性映射能力在电力系统模式识别及非线性优化领域有着广泛深入的应用研究。本文将Super SAB神经网络算法应用于主变压器溶解气体故障诊断(DGA),通过与带动量因子的标准BP算法、Bold Driver算法比较,验... 人工神经网络(ANN)由于其高度的非线性映射能力在电力系统模式识别及非线性优化领域有着广泛深入的应用研究。本文将Super SAB神经网络算法应用于主变压器溶解气体故障诊断(DGA),通过与带动量因子的标准BP算法、Bold Driver算法比较,验证Super SAB算法在故障模式识别中具有更好的学习效率与泛化能力,故障诊断的准确度高于传统分析方法,表明其在变电设备状态诊断中具有良好的应用前景。 展开更多
关键词 主变压器 状态检修 故障诊断 人工神经网络 superSAB
下载PDF
Two-Stage Point Cloud Super Resolution with Local Interpolation and Readjustment via Outer-Product Neural Network 被引量:7
8
作者 WANG Guangyu XU Gang +1 位作者 WU Qing WU Xundong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第1期68-82,共15页
This paper proposes a two-stage point cloud super resolution framework that combines local interpolation and deep neural network based readjustment. For the first stage, the authors apply a local interpolation method ... This paper proposes a two-stage point cloud super resolution framework that combines local interpolation and deep neural network based readjustment. For the first stage, the authors apply a local interpolation method to increase the density and uniformity of the target point cloud. For the second stage, the authors employ an outer-product neural network to readjust the position of points that are inserted at the first stage. Comparison examples are given to demonstrate that the proposed framework achieves a better accuracy than existing state-of-art approaches, such as PU-Net, Point Net and DGCNN(Source code is available at https://github.com/qwerty1319/PC-SR). 展开更多
关键词 neural network outer-product network point cloud super resolution
原文传递
二阶逐层特征融合网络的图像超分辨重建 被引量:1
9
作者 于蕾 邓秋月 +1 位作者 郑丽颖 吴昊宇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期391-400,共10页
针对一些超分辨网络忽略了对网络各层次特征的复用以及融合的问题,构建了具有较强特征复用和融合能力的二阶逐层特征融合超分辨网络,以获得具有高分辨率、高保真度的重建图像。网络的核心是逐层特征融合模块,该模块通过特征融合操作增... 针对一些超分辨网络忽略了对网络各层次特征的复用以及融合的问题,构建了具有较强特征复用和融合能力的二阶逐层特征融合超分辨网络,以获得具有高分辨率、高保真度的重建图像。网络的核心是逐层特征融合模块,该模块通过特征融合操作增强特征的重用。此外,还提出了二阶特征融合机制,该机制在网络的局部和全局层次上采用逐层特征融合方法进行特征融合。实验结果表明该网络的重建图像在线条和轮廓上更清晰,并且在峰值信噪比和结构相似度上也取得了更好的结果。例如当缩放尺度因子为2时,各测试集上的峰值信噪比/结构相似度依次为38.20 dB/0.9612、33.81 dB/0.9195、32.28 dB/0.9010、32.65 dB/0.9324、39.11 dB/0.9779,相比其他模型有一定提升,从客观标准和主观角度证明了二阶逐层特征融合超分辨网络具有一定的优越性。 展开更多
关键词 超分辨重建 卷积神经网络 特征融合 二阶特征融合机制
下载PDF
基于混合时空卷积的轻量级视频超分辨率重建
10
作者 夏振平 陈豪 +2 位作者 张宇宁 程成 胡伏原 《光学精密工程》 EI CAS CSCD 北大核心 2024年第16期2564-2576,共13页
针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提... 针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提升以及计算复杂度的降低;其次,提出了一个基于相似性的选择性特征融合模块,进一步增强了相关特征的提取能力;最后,设计了一种基于注意力机制的运动补偿模块,在一定程度上减轻了错误的特征融合的影响。实验结果表明:所提网络可以在视频超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集SPMCS-11上4倍超分辨率达到8 frame/s。所提网络满足了边缘设备推理运行中快速、准确等要求。 展开更多
关键词 视频超分辨率 深度学习 三维卷积神经网络 特征融合
下载PDF
基于多频特征和纹理增强的轻量化图像超分辨率重建
11
作者 刘媛媛 张雨欣 +1 位作者 王晓燕 朱路 《计算机应用研究》 CSCD 北大核心 2024年第8期2515-2520,共6页
现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参... 现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参数量;通过分离图像的低频、中频以及高频率信息后进行特征异构提取,提高网络的表达能力和特征区分性,使其更注重纹理细节特征的复原,并合理分配计算资源。此外,在网络内部融合局部二值模式(LBP)算法用于增强网络对纹理感知的敏感度,旨在进一步提高网络对细节的提取能力。经验证,该方法在复杂度和性能之间取得了良好的权衡,即实现轻量有效提取图像特征的同时重建出高分辨率图像。在Set5数据集上的2倍放大实验结果最终表明,相比较于基于卷积神经网络的图像超分辨率经典算法(SRCNN)和较新算法(MADNet),所提方法的峰值信噪比(PSNR)分别提升了1.31 dB和0.12 dB,参数量相比MADNet减少了55%。 展开更多
关键词 图像超分辨率重建 卷积神经网络 轻量化 多频率特征提取 局部二值模式算法
下载PDF
复杂退化模型下图像超分辨率算法综述
12
作者 陈伟 吴凡 +1 位作者 田子建 刘珏廷 《郑州大学学报(理学版)》 CAS 北大核心 2024年第4期1-10,共10页
图像的超分辨率(super-resolution,SR)一直以来是计算机视觉(computer vision,CV)领域的一项热门的研究方向,它旨在从单张或多张低分辨率图像中通过一系列的图像处理和深度学习技术,重建带有丰富边缘纹理等细节特征的高分辨率图像。自... 图像的超分辨率(super-resolution,SR)一直以来是计算机视觉(computer vision,CV)领域的一项热门的研究方向,它旨在从单张或多张低分辨率图像中通过一系列的图像处理和深度学习技术,重建带有丰富边缘纹理等细节特征的高分辨率图像。自从深度卷积神经网络应用于图像超分辨率算法后,其性能相较于传统的基于重构和基于样例的SR算法有了非常大的提升。然而,目前的SR算法在实际场景应用、算法性能、模型质量评估标准等方面仍然需要改良和优化。因此,为推进图像超分辨率技术的发展,总结并分析了基于深度学习的SR算法。首先,将目前主流的SR算法分为基于卷积神经网络、基于生成对抗网络、基于Transformer这三类;其次,详细评述了每一类算法的网络结构、算法优缺点、算法特色及适用场景等;然后,对常见的超分辨率数据集及各种评价指标进行阐述,重点比较了不同SR算法在各类数据集上的性能;最后,总结了图像超分辨率目前研究所面临的问题并探讨了图像超分辨率的未来研究方向。 展开更多
关键词 深度学习 超分辨率 卷积神经网络 生成对抗网络 图像质量评价
下载PDF
多耦合反馈网络的图像融合和超分辨率方法
13
作者 王蓉 端木春江 《计算机工程与应用》 CSCD 北大核心 2024年第5期210-220,共11页
人们在日常生活中往往需要得到高动态范围和高分辨率的图像。但由于技术设备的限制,高动态范围的图像往往通过低动态范围图像的多曝光融合(MEF)而获得,高分辨率图像往往通过低分辨率图像的超分辨率(SR)而获得。MEF和SR通常被作为两个独... 人们在日常生活中往往需要得到高动态范围和高分辨率的图像。但由于技术设备的限制,高动态范围的图像往往通过低动态范围图像的多曝光融合(MEF)而获得,高分辨率图像往往通过低分辨率图像的超分辨率(SR)而获得。MEF和SR通常被作为两个独立的内容进行研究。为了解决当前模型不能同时实现高动态范围和高分辨率的问题,通过对现有方法进行研究,提出了一种基于多耦合反馈网络MCF-Net及其方法。模型包括:N个子网和输出模块;在方法中,将N张下采样图片I_(lr)^(i),I_(lr)^(m),I_(lr)^(-i)分别输入至N个子网,提取的低分辨率特征F_(lr)^(i),F_(lr)^(m),F_(lr)^(-i);根据低分辨率特征F_(lr)^(i),F_(lr)^(m),F_(lr)^(-i)提取对应图像的超分辨率特征G_(0)^(i),G_(0)^(m),G_(0)^(-i);得到融合高分辨率特征G_(t)^(i),G_(t)^(m),G_(t)^(-i)并输入至下个MCFB中,直至第T个MCFB得到融合高分辨率特征G_(T)^(i),G_(T)^(m),G_(T)^(-i);获取对应的融合超分辨率图像I_(t)^(i),I_(t)^(m),I_(t)^(-i);融合N个子网中第T个重建模块REC输出的I_(T)^(i),I_(T)^(m),I_(T)^(-i)得到高动态范围、超分辨率图像I_(out)。在SICE数据集上实验并验证了性能,与现有的33种方法进行对比,结果显示以下各评价指标都有明显的提高,其中结构相似性(SSIM)达到0.833 2,峰值信噪比(PSNR)达到22.07 dB,多曝光融合相似性(MEF-SSIM)达到0.937 8。 展开更多
关键词 图像多曝光融合 图像超分辨率 卷积神经网络 计算机视觉 深度学习
下载PDF
面向超分辨率重建的层次间局部特征增强网络
14
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 超分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
下载PDF
轻量级图像超分辨率研究综述
15
作者 朱新峰 宋健 《计算机工程与应用》 CSCD 北大核心 2024年第16期49-60,共12页
基于深度学习的图像超分辨率(super-resolution,SR)受到广泛关注,其目的是提高图像的分辨率,以便对图像做进一步的处理,如目标检测、图像分类和人脸识别等。图像SR领域相关研究近年来取得了迅猛发展,但有关轻量级SR模型的相关综述还不... 基于深度学习的图像超分辨率(super-resolution,SR)受到广泛关注,其目的是提高图像的分辨率,以便对图像做进一步的处理,如目标检测、图像分类和人脸识别等。图像SR领域相关研究近年来取得了迅猛发展,但有关轻量级SR模型的相关综述还不多见。对基于深度学习的轻量级SR方法研究现状和损失函数进行了分析,并对目前轻量级SR方法进行了新的分类,分别为传统卷积方法和注意力机制方法。系统梳理了图像轻量级SR方法的发展历程和最新进展,指出了每一种方法存在的优势和缺陷。最后对当前轻量级SR技术存在的问题进行了分析,并给出了轻量级图像SR方法未来的研究方向。 展开更多
关键词 图像超分辨率 轻量级 深度学习 卷积神经网络 注意力机制
下载PDF
基于像素对比学习的图像超分辨率算法
16
作者 周登文 刘子涵 刘玉铠 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期181-193,共13页
目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image superresolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出... 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image superresolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network,PRFFN).主要贡献有:1)提出一个通用的基于对比学习的逐像素损失函数,能够改进SR图像的保真度和视觉质量;2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block,MRCAB),可以更好地提取和利用多尺度特征信息;3)提出一个空间注意力融合块(Spatial attention fuse block,SAFB),可以更好地利用邻近空间特征的相关性.实验结果表明,PRFFN显著优于其他代表性方法. 展开更多
关键词 图像超分辨率 卷积神经网络 对比学习 注意力机制
下载PDF
基于多尺度信息蒸馏的图像超分辨率算法
17
作者 邢晓敏 刘威 陈成 《武汉工程大学学报》 CAS 2024年第6期663-670,共8页
针对卷积神经网络复杂的框架和大量的计算导致基于深度学习的图像超分辨率算法在如卫星导航系统等边缘设备上部署难的问题,提出一种新颖的多尺度信息蒸馏网络(MSIDN)重建超分辨率图像。该网络应用多阶段的策略逐步恢复出高质量的超分辨... 针对卷积神经网络复杂的框架和大量的计算导致基于深度学习的图像超分辨率算法在如卫星导航系统等边缘设备上部署难的问题,提出一种新颖的多尺度信息蒸馏网络(MSIDN)重建超分辨率图像。该网络应用多阶段的策略逐步恢复出高质量的超分辨率图像,每一阶段由多尺度信息蒸馏编解码模块(MIDCB)组成。MIDCB在编码阶段对特征通道执行切分编码,能够保留浅层信息并提取有效的高频信号;而解码阶段通过增强高频信号,并使用通道注意力融合切分通道的编解码特征。MSIDN从MIDCB中学习更具辨识力的高频特征表达以及结构内容信息,不仅提高超分辨率网络的重建效果,同时也满足网络结构的轻量化。在4个公开数据集Set5、Set14、BSD100和Urban100上进行4倍放大实验,结果显示,峰值信噪比相比于增强深度残差超分辨率算法分别提升了0.89、0.02、0.01和0.34 dB,重建后图像的内容结构、边缘纹理优于其他主流超分辨率算法,证明MSIDN在单幅图像超分辨率重建中的优越性。 展开更多
关键词 图像超分辨率 卷积神经网络 多尺度信息蒸馏 通道注意力
下载PDF
基于渐进式特征融合卷积网络的轻量级超分辨重建算法研究
18
作者 王超英 《微型电脑应用》 2024年第7期32-35,共4页
超分辨率重建算法大多通过扩展卷积神经网络提取更多特征细节,容易导致计算复杂度的提高和模型参数量的增大。因此,提出一种渐进式特征融合卷积网络的轻量级超分辨率算法,主要以渐进方式聚合多尺度特征,利用多尺度像素注意力机制构建出... 超分辨率重建算法大多通过扩展卷积神经网络提取更多特征细节,容易导致计算复杂度的提高和模型参数量的增大。因此,提出一种渐进式特征融合卷积网络的轻量级超分辨率算法,主要以渐进方式聚合多尺度特征,利用多尺度像素注意力机制构建出简洁高效的上采样模块,保证网络效率和模型设计的轻量级别。在此基础上,还提出基于余弦退火学习的训练策略,在不改变模型结构的情况下提高复原图像的质量。 展开更多
关键词 图像超分辨率 轻量级 注意力机制 卷积神经网络
下载PDF
基于重参数化的超分辨率重建
19
作者 田蕾 申艺 《计算机与数字工程》 2024年第4期1110-1114,共5页
针对现有单图像超分辨率重建(Single Image Super-resolution,SISR)模型存在速度和精度的矛盾,论文给出了一种重参数化(Re-parameterization)的轻量模型用于实现图像重建。该模型训练时通过使用结构较复杂的模型保证精度,推理时通过模... 针对现有单图像超分辨率重建(Single Image Super-resolution,SISR)模型存在速度和精度的矛盾,论文给出了一种重参数化(Re-parameterization)的轻量模型用于实现图像重建。该模型训练时通过使用结构较复杂的模型保证精度,推理时通过模型等效变换为简单的卷积以提高速度。同时多监督结构的加入让模型收敛更快且更为灵活。通过峰值信噪比和结构相似度对重建模型的质量和效率进行了评估。验证了所提模型在现有超分辨率重建方法中兼具了轻量和重建质量良好的优点。 展开更多
关键词 单图像超分辨率 卷积神经网络 多监督学习 重参数化
下载PDF
基于Transformer-CNN的轻量级图像超分辨率重建网络 被引量:3
20
作者 陈豪 夏振平 +2 位作者 程成 林李兴 张博文 《计算机应用》 CSCD 北大核心 2024年第1期292-299,共8页
针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的... 针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的混合模块,从而增强网络捕获局部−全局深度特征的能力;其次,提出了一个改进的倒置残差块来特别关注高频区域的特征,以提升特征提取能力和减少推理时间;最后,在探索激活函数的最佳选择后,采用GELU(Gaussian Error Linear Unit)激活函数来进一步提高网络性能。实验结果表明,所提网络可以在图像超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集Urban100上4倍超分辨率的推理速度达到91 frame/s,比优秀网络SwinIR(Image Restoration using Swin transformer)快11倍,表明所提网络能够高效地重建图像的纹理和细节,并减少大量的推理时间。 展开更多
关键词 图像超分辨率 深度学习 TRANSFORMER 卷积神经网络 轻量级
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部