期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于一种新的联邦优化算法的信用风险预测方法
被引量:
3
1
作者
刘紫微
郑山红
《长春工业大学学报》
CAS
2023年第1期58-64,共7页
ResNet深度神经网络模型与联邦学习融合建模,实现信用风险预测并保证用户数据的隐私安全。模型准确率和精准度可达89.67%和94.22%。首次采用联邦优化算法-局部全局联合平均算法(LG-FEDAVG)优化训练过程,对贷款用户的信用风险建模。研究...
ResNet深度神经网络模型与联邦学习融合建模,实现信用风险预测并保证用户数据的隐私安全。模型准确率和精准度可达89.67%和94.22%。首次采用联邦优化算法-局部全局联合平均算法(LG-FEDAVG)优化训练过程,对贷款用户的信用风险建模。研究表明,LG-FEDAVG算法在保证信用风险预测效果的情况下产生的通信成本占通信总参数的3.22%。
展开更多
关键词
联邦学习
深度神经网络
信用风险评估
ResNet
局部全局联合平均算法
下载PDF
职称材料
题名
基于一种新的联邦优化算法的信用风险预测方法
被引量:
3
1
作者
刘紫微
郑山红
机构
长春工业大学计算机科学与工程学院
出处
《长春工业大学学报》
CAS
2023年第1期58-64,共7页
基金
吉林省教育厅科学研究项目(JJKH20210750KJ)。
文摘
ResNet深度神经网络模型与联邦学习融合建模,实现信用风险预测并保证用户数据的隐私安全。模型准确率和精准度可达89.67%和94.22%。首次采用联邦优化算法-局部全局联合平均算法(LG-FEDAVG)优化训练过程,对贷款用户的信用风险建模。研究表明,LG-FEDAVG算法在保证信用风险预测效果的情况下产生的通信成本占通信总参数的3.22%。
关键词
联邦学习
深度神经网络
信用风险评估
ResNet
局部全局联合平均算法
Keywords
federated
learning
deep neural network
credit risk assessment
ResNet
lg-fedavg
(
local
global
federated
averaging
)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于一种新的联邦优化算法的信用风险预测方法
刘紫微
郑山红
《长春工业大学学报》
CAS
2023
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部