This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A t...This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A total of 81 patients were recruited for this study.ResNet18,VGG16,and ResNet50 were trained and tested separately using 3828 positron emission tomography image slices that contained the medial temporal lobe(MTL)or basal ganglia(BG).Leave-one-out cross-validation at the patient level was used to evaluate the CNN models.The receiver operating characteristic(ROC)curve and the area under the ROC curve(AUC)were generated to evaluate the CNN models.Based on the prediction results at slice level,a decision strategy was employed to evaluate the CNN models’performance at patient level.The ResNet18 model achieved the best performance at the slice(AUC=0.86,accuracy=80.28%)and patient levels(AUC=0.98,accuracy=96.30%).Specifically,at the slice level,73.28%(1445/1972)of image slices with GABAB receptor antibody encephalitis and 87.72%(1628/1856)of image slices with LGI1 antibody encephalitis were accurately detected.At the patient level,94.12%(16/17)of patients with GABAB receptor antibody encephalitis and 96.88%(62/64)of patients with LGI1 antibody encephalitis were accurately detected.Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model focused on the MTL and BG for classification.In general,the ResNet18 model is a potential approach for discriminating between LGI1 and GABAB receptor antibody encephalitis.Metabolism in the MTL and BG is important for discriminating between these two encephalitis subtypes.展开更多
基金grants from the Beijing Natural Science Foundation-Haidian Original Innovation Joint Foundation,No.L222033the National Key Research and Development Program of China“Common Disease Prevention and Control Research”Key Project,No.2022YFC2503800+2 种基金the National Natural Science Foundation of China,No.81771143the Beijing Natural Science Foundation,No.7192054and the National Key Research and Development Program of China,No.2018YFC1315201.
文摘This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A total of 81 patients were recruited for this study.ResNet18,VGG16,and ResNet50 were trained and tested separately using 3828 positron emission tomography image slices that contained the medial temporal lobe(MTL)or basal ganglia(BG).Leave-one-out cross-validation at the patient level was used to evaluate the CNN models.The receiver operating characteristic(ROC)curve and the area under the ROC curve(AUC)were generated to evaluate the CNN models.Based on the prediction results at slice level,a decision strategy was employed to evaluate the CNN models’performance at patient level.The ResNet18 model achieved the best performance at the slice(AUC=0.86,accuracy=80.28%)and patient levels(AUC=0.98,accuracy=96.30%).Specifically,at the slice level,73.28%(1445/1972)of image slices with GABAB receptor antibody encephalitis and 87.72%(1628/1856)of image slices with LGI1 antibody encephalitis were accurately detected.At the patient level,94.12%(16/17)of patients with GABAB receptor antibody encephalitis and 96.88%(62/64)of patients with LGI1 antibody encephalitis were accurately detected.Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model focused on the MTL and BG for classification.In general,the ResNet18 model is a potential approach for discriminating between LGI1 and GABAB receptor antibody encephalitis.Metabolism in the MTL and BG is important for discriminating between these two encephalitis subtypes.