The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their ...The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their impacts on circulation,it is imperative to incorporate tidal forcing into the eddy-resolving global ocean circulation model.In this study,we successfully incorporated explicit tides(eight major constituents)into a global eddy-resolving general ocean circulation model and evaluated its tidal simulation ability.We obtained harmonic constants by analyzing sea surface height through tidal harmonic analysis and compared them with the analysis data Topex Poseidon Cross-Overs v9(TPXO9),the open ocean tide dataset from 102 open-ocean tide observations,and tide gauge stations from World Ocean Circulation Experiment.The results demonstrated that the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate System Ocean Model 3.0(LICOM3.0)effectively simulated tides,with errors predominantly occurring in nearshore regions.The tidal amplitude simulated in LICOM3.0 was greater than that of TPXO9,and these high-amplitude areas exhibited greater errors.The amplitude error of the M_(2) constituent was larger,while the phase error of the K_(1) constituent was more significant.Furthermore,we further compared our results with those from other models.展开更多
基金The National Natural Science Foundation of China under contract Nos 41931182,42090040,42176024,and 42206006the National Key Program for Developing Basic Sciences under contract No.2022YFC3104802.
文摘The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their impacts on circulation,it is imperative to incorporate tidal forcing into the eddy-resolving global ocean circulation model.In this study,we successfully incorporated explicit tides(eight major constituents)into a global eddy-resolving general ocean circulation model and evaluated its tidal simulation ability.We obtained harmonic constants by analyzing sea surface height through tidal harmonic analysis and compared them with the analysis data Topex Poseidon Cross-Overs v9(TPXO9),the open ocean tide dataset from 102 open-ocean tide observations,and tide gauge stations from World Ocean Circulation Experiment.The results demonstrated that the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate System Ocean Model 3.0(LICOM3.0)effectively simulated tides,with errors predominantly occurring in nearshore regions.The tidal amplitude simulated in LICOM3.0 was greater than that of TPXO9,and these high-amplitude areas exhibited greater errors.The amplitude error of the M_(2) constituent was larger,while the phase error of the K_(1) constituent was more significant.Furthermore,we further compared our results with those from other models.