Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Hel...Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .展开更多
Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent...Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.展开更多
Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cann...Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.展开更多
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco...Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.展开更多
The present paper deals with the multiple solutions and their stability analy- sis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary...The present paper deals with the multiple solutions and their stability analy- sis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary condition. The Lie group transformation is used to find the similarity transformations which transform the governing transport equations to a system of coupled ordinary differential equations with boundary condi- tions. These coupled set of ordinary differential equation is then solved using the Runge- Kutta-Fehlberg fourth-fifth order (RKF45) method and the ode15s solver in MATLAB. For stability analysis, the eigenvalue problem is solved to check the physically realizable solution. The upper branch is found to be stable, whereas the lower branch is unsta- ble. The critical values (turning points) for suction (0 〈 sc 〈 s) and the shrinking parameter (Xc 〈 X 〈 0) are also shown graphically for both no-slip and multiple-slip conditions. Multiple regression analysis for the stable solution is carried out to inves- tigate the impact of various pertinent parameters on heat transfer rates, The Nusselt number is found to be a decreasing function of the thermophoresis and Brownian motion parameters.展开更多
The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary laye...The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink.展开更多
Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dim...Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.展开更多
Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is ...Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.展开更多
Harish-Chandra have got a Fourier inversion formula for C-c(infinity)(SL (2, R)). In this paper, we give a discussion on approximation identity kernels on SL(2, R) and get some properties of their Fourier transforms, ...Harish-Chandra have got a Fourier inversion formula for C-c(infinity)(SL (2, R)). In this paper, we give a discussion on approximation identity kernels on SL(2, R) and get some properties of their Fourier transforms, and then, making use of these properties and Harish-Chandra's result, we prove that the Fourier inversion formula obtained by Harish-Chandra is also valid for C-o(3)(SL,2, R)).展开更多
This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conception...This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conceptions of Dynkin diagrams in LML,the classification theorems of Dynkin diagrams in LML,the classification algorithm of Dynkin diagrams in LML and the verification of the classification algorithm with experimental results.展开更多
We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtain...We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.展开更多
In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases....In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.展开更多
In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory ...In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory part, we have general linear groups, special linear groups, octagonal groups, symplicit groups, cyclic groups, dihedral groups: generators and relations. The paper is summarized with brief deficits, examples and evidence as well as several problems. When you ask why this paper, I will just say that it is one of the ways I contribute to the community and try to be a part of this little world of science.展开更多
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multi...In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.展开更多
The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for d...The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for dynamics analysis and control, and the multistage solar panels means the dynamics modeling will be very complex. In this research, the Lie group variational integrator method is introduced, and the dynamics model of spacecraft with solar panels that connects together by flexible joints is built. The most obvious character of this method is that the attitudes of central body and solar panels are all described by three-dimensional attitude matrix. The dynamics models of spacecraft with one and three solar panels are established and simulated. The study shows Lie group variational integrator method avoids parameters coupling and effectively reduces difficulty of modeling. The obtained continuous dynamics model based on Lie group is a set of ordinary differential equations and equivalent with traditional dynamics model that offers a basis for the geometry control.展开更多
This paper examines a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformation...This paper examines a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equa- tions. The system remains invariant due to some relations among the transformation parameters. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases but the temperature increases with the decreasing viscosity. The impact of the thermophoresis particle deposition plays an important role in the concentration boundary layer. The obtained results are presented graphically and discussed.展开更多
In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by deter...In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.展开更多
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent s...For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.展开更多
In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dim...In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dimension of the stratified Lie group G.展开更多
In this study,we examine the possible relations between the Frenet planes of any given two curves in three dimensional Lie groups with left invariant metrics.We explain these possible relations in nine cases and then ...In this study,we examine the possible relations between the Frenet planes of any given two curves in three dimensional Lie groups with left invariant metrics.We explain these possible relations in nine cases and then introduce the conditions that must be met to coincide with the planes of these curves in nine theorems.展开更多
文摘Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .
文摘Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.
基金国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China
文摘Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.
基金Supported by Zhejiang Province Foundation for Distinguished Young Scholars of China(Grant No.LR18E050003)National Natural Science Foundation of China(Grant Nos.51975523,51475424,51905481)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906).
文摘Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.
基金Project supported by Universiti Sains Malaysia(No.1001/PMATHS/811252)
文摘The present paper deals with the multiple solutions and their stability analy- sis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary condition. The Lie group transformation is used to find the similarity transformations which transform the governing transport equations to a system of coupled ordinary differential equations with boundary condi- tions. These coupled set of ordinary differential equation is then solved using the Runge- Kutta-Fehlberg fourth-fifth order (RKF45) method and the ode15s solver in MATLAB. For stability analysis, the eigenvalue problem is solved to check the physically realizable solution. The upper branch is found to be stable, whereas the lower branch is unsta- ble. The critical values (turning points) for suction (0 〈 sc 〈 s) and the shrinking parameter (Xc 〈 X 〈 0) are also shown graphically for both no-slip and multiple-slip conditions. Multiple regression analysis for the stable solution is carried out to inves- tigate the impact of various pertinent parameters on heat transfer rates, The Nusselt number is found to be a decreasing function of the thermophoresis and Brownian motion parameters.
基金supported by the National Natural Science Foundation of China(No.11302024)the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-036A3)+1 种基金the Beijing Higher Education Young Elite Teacher Project(No.YETP0387)the Foundation of the China Scholarship Council in 2014(No.154201406465041)
文摘The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink.
文摘Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.
文摘Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.
文摘Harish-Chandra have got a Fourier inversion formula for C-c(infinity)(SL (2, R)). In this paper, we give a discussion on approximation identity kernels on SL(2, R) and get some properties of their Fourier transforms, and then, making use of these properties and Harish-Chandra's result, we prove that the Fourier inversion formula obtained by Harish-Chandra is also valid for C-o(3)(SL,2, R)).
基金Na tureScienceFoundationof JiangsuProvinceunder Grant No .BK2005027 and the211 FoundationofSoochow University
文摘This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conceptions of Dynkin diagrams in LML,the classification theorems of Dynkin diagrams in LML,the classification algorithm of Dynkin diagrams in LML and the verification of the classification algorithm with experimental results.
基金Supported by the PCI of the UCA ‘Teoría de Lie y Teoría de Espacios de Banachthe PAI with project numbers FQM-298 and FQM-336the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with fondos FEDER
文摘We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.
文摘In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.
文摘In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory part, we have general linear groups, special linear groups, octagonal groups, symplicit groups, cyclic groups, dihedral groups: generators and relations. The paper is summarized with brief deficits, examples and evidence as well as several problems. When you ask why this paper, I will just say that it is one of the ways I contribute to the community and try to be a part of this little world of science.
基金Project supported by the Ministry of Minority Affairs through UGC,Government of India(No.F1-17.1/2010/MANF-CHR-ORI-1839)the Industrial Consultancy,IIT Kharagpur(No.IIT/SRIC/ISIRD/2013-14)
文摘In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.
基金the financial support from the National Natural Science Foundation of China (Grants 11732005 and 11472058)
文摘The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for dynamics analysis and control, and the multistage solar panels means the dynamics modeling will be very complex. In this research, the Lie group variational integrator method is introduced, and the dynamics model of spacecraft with solar panels that connects together by flexible joints is built. The most obvious character of this method is that the attitudes of central body and solar panels are all described by three-dimensional attitude matrix. The dynamics models of spacecraft with one and three solar panels are established and simulated. The study shows Lie group variational integrator method avoids parameters coupling and effectively reduces difficulty of modeling. The obtained continuous dynamics model based on Lie group is a set of ordinary differential equations and equivalent with traditional dynamics model that offers a basis for the geometry control.
文摘This paper examines a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equa- tions. The system remains invariant due to some relations among the transformation parameters. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases but the temperature increases with the decreasing viscosity. The impact of the thermophoresis particle deposition plays an important role in the concentration boundary layer. The obtained results are presented graphically and discussed.
文摘In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.
文摘For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.
文摘In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dimension of the stratified Lie group G.
文摘In this study,we examine the possible relations between the Frenet planes of any given two curves in three dimensional Lie groups with left invariant metrics.We explain these possible relations in nine cases and then introduce the conditions that must be met to coincide with the planes of these curves in nine theorems.