A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1....A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.展开更多
基金中国科学院资助项目,the Science Foundation of Liuhui Center of Tianjin University and Nankai University,辽宁省自然科学基金
文摘A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.