This article proposes a method of management and control of a continuous bus powered by renewable energies for autonomous applications. The DC bus is obtained from two systems of renewable sources (the solar system an...This article proposes a method of management and control of a continuous bus powered by renewable energies for autonomous applications. The DC bus is obtained from two systems of renewable sources (the solar system and the wind system) and storage battery (Lithium Ion). The continuous bus control and management procedure require efficiency in the control of the charge and discharge of the battery according to the load energy demand (DC Motor). The battery charging process is non-linear, varying over time with considerable delay, so it is difficult to achieve the best performance on control with energy management using traditional control approaches. A fuzzy control strategy is used in this article for battery control. To improve battery life, fuzzy control manages the desired state of charge (SOC). The entire system designed is modeled and simulated on MATLAB/Simulink Environment.展开更多
文摘This article proposes a method of management and control of a continuous bus powered by renewable energies for autonomous applications. The DC bus is obtained from two systems of renewable sources (the solar system and the wind system) and storage battery (Lithium Ion). The continuous bus control and management procedure require efficiency in the control of the charge and discharge of the battery according to the load energy demand (DC Motor). The battery charging process is non-linear, varying over time with considerable delay, so it is difficult to achieve the best performance on control with energy management using traditional control approaches. A fuzzy control strategy is used in this article for battery control. To improve battery life, fuzzy control manages the desired state of charge (SOC). The entire system designed is modeled and simulated on MATLAB/Simulink Environment.