The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around...The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices.展开更多
基金supported by the National MCF Energy R&D Program of China(No.2018YFE0303100)National Natural Science Foundation of China(No.11975038)。
文摘The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices.