In this paper,we propose a new biased estimator namely modified almost unbiased Liu estimator by combining almost unbiased Liu estimator(AULE)andridge estimator(RE)in a linear regression model when multicollinearity p...In this paper,we propose a new biased estimator namely modified almost unbiased Liu estimator by combining almost unbiased Liu estimator(AULE)andridge estimator(RE)in a linear regression model when multicollinearity presents amongthe independent variables.Necessary and sufficient conditions for the proposed estimator over the ordinary least square estimator,RE,AULE and Liu estimator(LE)in the mean squared error matrix sense are derived,and the optimal biasing parameters are obtained.To illustrate the theoretical findings,a Monte Carlo simulation study is carried out and a numerical example is used.展开更多
In this article,we propose a new biased estimator,namely stochastic restricted modified almost unbiased Liu estimator by combining modified almost unbiased Liu estimator(MAULE)and mixed estimator(ME)when the stochasti...In this article,we propose a new biased estimator,namely stochastic restricted modified almost unbiased Liu estimator by combining modified almost unbiased Liu estimator(MAULE)and mixed estimator(ME)when the stochastic restrictions are available and the multicollinearity presents.The conditions of supe-riority of the proposed estimator over the ordinary least square estimator,ME,ridge estimator,Liu estimator,almost unbiased Liu estimator,stochastic restricted Liu esti-mator and MAULE in the mean squared error matrix sense are obtained.Finally,a numerical example and a Monte Carlo simulation are given to illustrate the theoretical findings.展开更多
In this paper, we introduce a generalized Liu estimator and jackknifed Liu estimator in a linear regression model with correlated or heteroscedastic errors. Therefore, we extend the Liu estimator. Under the mean squar...In this paper, we introduce a generalized Liu estimator and jackknifed Liu estimator in a linear regression model with correlated or heteroscedastic errors. Therefore, we extend the Liu estimator. Under the mean square error(MSE), the jackknifed estimator is superior to the Liu estimator and the jackknifed ridge estimator. We also give a method to select the biasing parameter for d. Furthermore, a numerical example is given to illustvate these theoretical results.展开更多
文摘In this paper,we propose a new biased estimator namely modified almost unbiased Liu estimator by combining almost unbiased Liu estimator(AULE)andridge estimator(RE)in a linear regression model when multicollinearity presents amongthe independent variables.Necessary and sufficient conditions for the proposed estimator over the ordinary least square estimator,RE,AULE and Liu estimator(LE)in the mean squared error matrix sense are derived,and the optimal biasing parameters are obtained.To illustrate the theoretical findings,a Monte Carlo simulation study is carried out and a numerical example is used.
文摘In this article,we propose a new biased estimator,namely stochastic restricted modified almost unbiased Liu estimator by combining modified almost unbiased Liu estimator(MAULE)and mixed estimator(ME)when the stochastic restrictions are available and the multicollinearity presents.The conditions of supe-riority of the proposed estimator over the ordinary least square estimator,ME,ridge estimator,Liu estimator,almost unbiased Liu estimator,stochastic restricted Liu esti-mator and MAULE in the mean squared error matrix sense are obtained.Finally,a numerical example and a Monte Carlo simulation are given to illustrate the theoretical findings.
基金Supported by the National Natural Science Foundation of China(11071022)Science and Technology Project of Hubei Provincial Department of Education(Q20122202)
文摘In this paper, we introduce a generalized Liu estimator and jackknifed Liu estimator in a linear regression model with correlated or heteroscedastic errors. Therefore, we extend the Liu estimator. Under the mean square error(MSE), the jackknifed estimator is superior to the Liu estimator and the jackknifed ridge estimator. We also give a method to select the biasing parameter for d. Furthermore, a numerical example is given to illustvate these theoretical results.