局部线性嵌入法(locally linear embedding,LLE)是一种典型的流形学习算法。在分析LLE算法的基本计算思路的基础上,提出了一种基于最佳分类效果的k和d综合参数选择方法。此方法综合考虑了故障类内和类间的离散度,并以此作为LLE算法特征...局部线性嵌入法(locally linear embedding,LLE)是一种典型的流形学习算法。在分析LLE算法的基本计算思路的基础上,提出了一种基于最佳分类效果的k和d综合参数选择方法。此方法综合考虑了故障类内和类间的离散度,并以此作为LLE算法特征压缩效果的评价依据。根据LLE算法的局部线性特征保持的基本特点,提出了一种增量式LLE算法用于柴油机机械故障特征压缩与诊断中。以平均子带能量法构造特征向量空间,子带数目的确定以同种故障类型特征参数间方差最小为准则。实验中,分别使用基于最佳参数选择的LLE算法、传统的主成分分析(principal component analysis,PCA)、增量式LLE算法对柴油机特征向量进行压缩,并对这三种算法的特征压缩结果运用K近邻算法(K-nearest neighborm,KNN)进行故障诊断与分类。结果表明基于最佳参数选择的LLE算法的诊断分类效果要优于传统的PCA方法,增量式LLE算法也取得良好的分类效果。实验表明,对LLE算法进行有关改进可以很好地应用到机械故障特征压缩与诊断中。展开更多
本文针对局部线性嵌入算法(locally linear embedding,LLE)中近邻点个数K的选取对结果的敏感性,提出了将改进距离的LLE算法与支持向量机分类算法相结合的人脸识别方法。通过实验,在K值相等的情况下,改进的LLE算法在人脸识别过程中的效...本文针对局部线性嵌入算法(locally linear embedding,LLE)中近邻点个数K的选取对结果的敏感性,提出了将改进距离的LLE算法与支持向量机分类算法相结合的人脸识别方法。通过实验,在K值相等的情况下,改进的LLE算法在人脸识别过程中的效果要比单纯的LLE算法要好。展开更多
为实现烟叶风格的快速鉴别,根据烟叶近红外光谱高维、非线性、冗余的特点,在局部线性嵌入(Locally Linear Embedding,LLE)算法的基础上,提出了一种改进LLE非线性降维算法。采用具有确定香型风格特征的基准参比样品建立了香型风格投影模...为实现烟叶风格的快速鉴别,根据烟叶近红外光谱高维、非线性、冗余的特点,在局部线性嵌入(Locally Linear Embedding,LLE)算法的基础上,提出了一种改进LLE非线性降维算法。采用具有确定香型风格特征的基准参比样品建立了香型风格投影模型和判别模型,并与PCA、LLE降维方法进行了比较。结果表明该方法能够有效的对烟叶香型风格进行快速鉴别,准确率较高。应用该模型对2013年山东6大生态产区200个烟叶样品进行了分析,分析结果与以往专家的感官评吸结果基本一致。展开更多
本文针对locally linear embedding (LLE)算法中的两个参数:近邻点的个数k和降维后输出的维数d如何选取的问题,对LLE算法进行了改进。首先对降维的相关知识进行了描述,并具体介绍了对高维数据进行降维的目的。其次,讨论了LLE算法的基本...本文针对locally linear embedding (LLE)算法中的两个参数:近邻点的个数k和降维后输出的维数d如何选取的问题,对LLE算法进行了改进。首先对降维的相关知识进行了描述,并具体介绍了对高维数据进行降维的目的。其次,讨论了LLE算法的基本思想和计算步骤。最后,针对LLE算法中存在的问题进行了分析。展开更多
在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,L...在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,LLE)算法降维处理,用降维后的向量作为输入对BP_Adaboost分类器进行训练和测试类型识别。识别结果表明,用这样方法进行GIS绝缘缺陷类型识别可以在减少计算量的同时保持较高的识别率,说明了其在局部放电模式识别应用中的有效性。展开更多
针对传统降维方法中存在丢失判别信息及由高维空间原始特征张成的超曲面曲率较大时难以获取低维敏感信息的问题,提出一种基于Dijkstra算法的改进LLE(local linear embedding)转子故障数据集降维方法,即D-LLE法。在由时域、频域组成的原...针对传统降维方法中存在丢失判别信息及由高维空间原始特征张成的超曲面曲率较大时难以获取低维敏感信息的问题,提出一种基于Dijkstra算法的改进LLE(local linear embedding)转子故障数据集降维方法,即D-LLE法。在由时域、频域组成的原始特征空间中,利用Dijkstra算法具有可细致刻画出由时域、频域组成的原始特征空间的能力,结合LLE算法具备能够保持降维前后的转子故障数据集其流形保持不变的性质,据此可提取出反映转子运行状态的低维敏感特征属性。转子实验台模拟出的4种运行状态进行试验表明:优化后的特征数据集具有较好的聚类与类间可分性。展开更多
在传统的组合预测模型中,利用的数据大多为结构化数据,然而在网络环境下,非结构化数据广泛存在,因此充分利用非结构化数据所提供的有效信息是预测中要解决的关键问题之一。针对上述问题,文章构建了基于非结构化数据的局部线性嵌入和鲸...在传统的组合预测模型中,利用的数据大多为结构化数据,然而在网络环境下,非结构化数据广泛存在,因此充分利用非结构化数据所提供的有效信息是预测中要解决的关键问题之一。针对上述问题,文章构建了基于非结构化数据的局部线性嵌入和鲸鱼优化算法的最小二乘支持向量回归(locally linear embedding-whale optimization algorithm-least squares support vector regression,LLE-WOA-LSSVR)碳价格组合预测模型,通过LLE算法对非结构化的高维数据进行降维处理,并利用LSSVR进行预测。考虑到LSSVR模型中参数的选取会对预测结果产生影响,引入WOA算法优化模型中的参数。碳价格预测的实例结果表明,LLE-WOA-LSSVR预测模型可行且有效。展开更多
文摘为实现烟叶风格的快速鉴别,根据烟叶近红外光谱高维、非线性、冗余的特点,在局部线性嵌入(Locally Linear Embedding,LLE)算法的基础上,提出了一种改进LLE非线性降维算法。采用具有确定香型风格特征的基准参比样品建立了香型风格投影模型和判别模型,并与PCA、LLE降维方法进行了比较。结果表明该方法能够有效的对烟叶香型风格进行快速鉴别,准确率较高。应用该模型对2013年山东6大生态产区200个烟叶样品进行了分析,分析结果与以往专家的感官评吸结果基本一致。
文摘本文针对locally linear embedding (LLE)算法中的两个参数:近邻点的个数k和降维后输出的维数d如何选取的问题,对LLE算法进行了改进。首先对降维的相关知识进行了描述,并具体介绍了对高维数据进行降维的目的。其次,讨论了LLE算法的基本思想和计算步骤。最后,针对LLE算法中存在的问题进行了分析。
文摘在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,LLE)算法降维处理,用降维后的向量作为输入对BP_Adaboost分类器进行训练和测试类型识别。识别结果表明,用这样方法进行GIS绝缘缺陷类型识别可以在减少计算量的同时保持较高的识别率,说明了其在局部放电模式识别应用中的有效性。
文摘针对传统降维方法中存在丢失判别信息及由高维空间原始特征张成的超曲面曲率较大时难以获取低维敏感信息的问题,提出一种基于Dijkstra算法的改进LLE(local linear embedding)转子故障数据集降维方法,即D-LLE法。在由时域、频域组成的原始特征空间中,利用Dijkstra算法具有可细致刻画出由时域、频域组成的原始特征空间的能力,结合LLE算法具备能够保持降维前后的转子故障数据集其流形保持不变的性质,据此可提取出反映转子运行状态的低维敏感特征属性。转子实验台模拟出的4种运行状态进行试验表明:优化后的特征数据集具有较好的聚类与类间可分性。
文摘在传统的组合预测模型中,利用的数据大多为结构化数据,然而在网络环境下,非结构化数据广泛存在,因此充分利用非结构化数据所提供的有效信息是预测中要解决的关键问题之一。针对上述问题,文章构建了基于非结构化数据的局部线性嵌入和鲸鱼优化算法的最小二乘支持向量回归(locally linear embedding-whale optimization algorithm-least squares support vector regression,LLE-WOA-LSSVR)碳价格组合预测模型,通过LLE算法对非结构化的高维数据进行降维处理,并利用LSSVR进行预测。考虑到LSSVR模型中参数的选取会对预测结果产生影响,引入WOA算法优化模型中的参数。碳价格预测的实例结果表明,LLE-WOA-LSSVR预测模型可行且有效。