Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications s...Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications standards, can be mapped onto an Ising spin systems. Besides, it has been shown that the Belief-Propagation (BP) algorithm, the LDPC codes decoding algorithm, is equivalent to the Thouless- Anderson-Palmer (TAP) approach [2]. Unfortunately, no study has been made for the other decoding algorithms. In this paper, we develop the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm and its simplifications the BP-Based algorithm and the λ-min algorithm with the TAP approach. We present the performance of these decoding algorithms using statistical physics argument i.e., we present the performance as function of the magnetization.展开更多
针对现有的基于低密度奇偶校验(Low Density Parity Check,LDPC)码的数字水印技术中译码算法存在由于振荡无法收敛的问题,提出一种基于振荡的对数似然比置信传播(Log-Likelihood Ratio Belief Propagation,LLR-BP)译码算法。算法将前后...针对现有的基于低密度奇偶校验(Low Density Parity Check,LDPC)码的数字水印技术中译码算法存在由于振荡无法收敛的问题,提出一种基于振荡的对数似然比置信传播(Log-Likelihood Ratio Belief Propagation,LLR-BP)译码算法。算法将前后两次的对数似然比进行加权处理,改善了由振荡引起的译码错误,并将该算法应用到数字水印技术中。实验结果表明,该算法在增加较少计算复杂度的前提下和传统的LLR-BP译码算法相比误码率有所降低并提高了数字水印技术的鲁棒性。展开更多
文摘Low-density parity-check (LDPC) codes are very efficient for communicating reliably through a noisy channel. N.Sourlas [1] showed that LDPC codes, which revolutionize the codes domain and used in many communications standards, can be mapped onto an Ising spin systems. Besides, it has been shown that the Belief-Propagation (BP) algorithm, the LDPC codes decoding algorithm, is equivalent to the Thouless- Anderson-Palmer (TAP) approach [2]. Unfortunately, no study has been made for the other decoding algorithms. In this paper, we develop the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm and its simplifications the BP-Based algorithm and the λ-min algorithm with the TAP approach. We present the performance of these decoding algorithms using statistical physics argument i.e., we present the performance as function of the magnetization.
文摘针对现有的基于低密度奇偶校验(Low Density Parity Check,LDPC)码的数字水印技术中译码算法存在由于振荡无法收敛的问题,提出一种基于振荡的对数似然比置信传播(Log-Likelihood Ratio Belief Propagation,LLR-BP)译码算法。算法将前后两次的对数似然比进行加权处理,改善了由振荡引起的译码错误,并将该算法应用到数字水印技术中。实验结果表明,该算法在增加较少计算复杂度的前提下和传统的LLR-BP译码算法相比误码率有所降低并提高了数字水印技术的鲁棒性。