振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(emp...振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。展开更多
局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函...局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。展开更多
论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号...论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号进行分解,得到一系列的生产函数分量,然后,再对前面几个生产函数分量进行包络分析,从包络谱中提取特征幅值比作为特征向量输入到SVM分类器中进行识别。实验结果验证了提出的方法的有效性,可以有效地识别滚动轴承的不同故障。展开更多
采用局部均值分解(Local Mean Decomposition,LMD)方法来识别机械系统固有频率和阻尼比。局部均值分解(LMD)方法可以自适应地将一个复杂信号分解为若干个具有一定物理意义的PF(Production Function)分量之和,采用LMD方法对脉冲激励下机...采用局部均值分解(Local Mean Decomposition,LMD)方法来识别机械系统固有频率和阻尼比。局部均值分解(LMD)方法可以自适应地将一个复杂信号分解为若干个具有一定物理意义的PF(Production Function)分量之和,采用LMD方法对脉冲激励下机械系统的加速度响应信号进行分解,得到一列具有物理意义的PF分量,每一个PF分量可以对应于某一个模态下的振动响应,进而就可以通过拟合瞬时频率和瞬时幅值曲线识别模态固有频率和阻尼比。先采用仿真信号进行了分析,使用LMD方法和经验模态分解方法(Empirical Mode Decomposition,EMD)对梁的瞬态响应实验数据进行模态识别并同仿真结果进行对比研究,结果表明用LMD进行模态分析具有较好的效果。展开更多
局部均值分解(local mean decomposition,LMD)适用于分析非平稳的滚动轴承故障信号。文章针对LMD存在的端点效应以及敏感分量难以筛选的问题,提出一种基于匹配误差的四点波形延拓方法来改善端点效应,将综合特征指标与K-means聚类分析相...局部均值分解(local mean decomposition,LMD)适用于分析非平稳的滚动轴承故障信号。文章针对LMD存在的端点效应以及敏感分量难以筛选的问题,提出一种基于匹配误差的四点波形延拓方法来改善端点效应,将综合特征指标与K-means聚类分析相结合筛选敏感分量;轴承故障信号经改进的LMD分解为若干个乘积函数(product function,PF)分量;计算所有PF分量的8个参数作为综合特征指标,再利用K-means聚类分析进行分类,区分出敏感分量与虚假分量,并重组敏感分量;最后利用包络分析成功提取到故障特征频率。结果表明该方法是一种有效的滚动轴承故障诊断方法。展开更多
针对齿轮系统非线性、非平稳性特点及传统时频分析方法的局限性,提出一种将小波和局域均值分解(Local mean decomposition,LMD)相结合进行齿轮故障特征提取的方法。该方法将原始信号通过小波分解再重构进行处理,以降低噪声的干扰,然后...针对齿轮系统非线性、非平稳性特点及传统时频分析方法的局限性,提出一种将小波和局域均值分解(Local mean decomposition,LMD)相结合进行齿轮故障特征提取的方法。该方法将原始信号通过小波分解再重构进行处理,以降低噪声的干扰,然后对重构信号进行LMD分解,并且对分解后所得到的乘积函数(PF)分量进行筛选。对筛选后的乘积函数进行包络谱分析,提取其故障特征进行研究。结果表明,两者相结合是一种很有效的故障特征提取方法,减弱了噪声对信号的干扰,可以实现对其振动信号故障特征的提取和诊断。展开更多
文摘振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。
文摘局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。
文摘论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号进行分解,得到一系列的生产函数分量,然后,再对前面几个生产函数分量进行包络分析,从包络谱中提取特征幅值比作为特征向量输入到SVM分类器中进行识别。实验结果验证了提出的方法的有效性,可以有效地识别滚动轴承的不同故障。
文摘局部均值分解(local mean decomposition,LMD)适用于分析非平稳的滚动轴承故障信号。文章针对LMD存在的端点效应以及敏感分量难以筛选的问题,提出一种基于匹配误差的四点波形延拓方法来改善端点效应,将综合特征指标与K-means聚类分析相结合筛选敏感分量;轴承故障信号经改进的LMD分解为若干个乘积函数(product function,PF)分量;计算所有PF分量的8个参数作为综合特征指标,再利用K-means聚类分析进行分类,区分出敏感分量与虚假分量,并重组敏感分量;最后利用包络分析成功提取到故障特征频率。结果表明该方法是一种有效的滚动轴承故障诊断方法。
文摘针对齿轮系统非线性、非平稳性特点及传统时频分析方法的局限性,提出一种将小波和局域均值分解(Local mean decomposition,LMD)相结合进行齿轮故障特征提取的方法。该方法将原始信号通过小波分解再重构进行处理,以降低噪声的干扰,然后对重构信号进行LMD分解,并且对分解后所得到的乘积函数(PF)分量进行筛选。对筛选后的乘积函数进行包络谱分析,提取其故障特征进行研究。结果表明,两者相结合是一种很有效的故障特征提取方法,减弱了噪声对信号的干扰,可以实现对其振动信号故障特征的提取和诊断。