期刊文献+
共找到5,371篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进K-means的局部离群点检测方法
1
作者 周玉 夏浩 +1 位作者 岳学震 王培崇 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期66-77,共12页
离群点检测任务是指检测与正常数据在特征属性上存在显著差异的异常数据。大多数基于聚类的离群点检测方法主要从全局角度对数据集中的离群点进行检测,而对局部离群点的检测性能较弱。基于此,本文通过引入快速搜索和发现密度峰值方法改... 离群点检测任务是指检测与正常数据在特征属性上存在显著差异的异常数据。大多数基于聚类的离群点检测方法主要从全局角度对数据集中的离群点进行检测,而对局部离群点的检测性能较弱。基于此,本文通过引入快速搜索和发现密度峰值方法改进K-means聚类算法,提出了一种名为KLOD(local outlier detection based on improved K-means and least-squares methods)的局部离群点检测方法,以实现对局部离群点的精确检测。首先,利用快速搜索和发现密度峰值方法计算数据点的局部密度和相对距离,并将二者相乘得到γ值。其次,将γ值降序排序,利用肘部法则选择γ值最大的k个数据点作为K-means聚类算法的初始聚类中心。然后,通过K-means聚类算法将数据集聚类成k个簇,计算数据点在每个维度上的目标函数值并进行升序排列。接着,确定数据点的每个维度的离散程度并选择适当的拟合函数和拟合点,通过最小二乘法对升序排列的每个簇的每1维目标函数值进行函数拟合并求导,以获取变化率。最后,结合信息熵,将每个数据点的每个维度目标函数值乘以相应的变化率进行加权,得到最终的异常得分,并将异常值得分较高的top-n个数据点视为离群点。通过人工数据集和UCI数据集,对KLOD、LOF和KNN方法在准确度上进行仿真实验对比。结果表明KLOD方法相较于KNN和LOF方法具有更高的准确度。本文提出的KLOD方法能够有效改善K-means聚类算法的聚类效果,并且在局部离群点检测方面具有较好的精度和性能。 展开更多
关键词 离群点检测 K均值聚类 最小二乘法 密度峰值 目标函数值
下载PDF
基于CEEMDAN-VSSLMS的滚动轴承故障诊断
2
作者 江莉 向世召 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期1138-1148,共11页
针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法。首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征... 针对传统机械轴承故障诊断模型易受系统噪声干扰、特征识别效率低等问题,提出一种基于信号固有模式深度建模分析的轴承故障诊断方法。首先,将采集到的轴承振动信号进行噪声自适应完全经验模态分解(CEEMDAN),获得不同时间尺度的局部特征信号,使用相关系数判别并去除虚假模态分量,再利用可变步长最小均方算法(VSSLMS)对剩余IMF分量降噪并进行重构;然后,将降噪后的振动信号进行离散小波变换(DWT)得到时频谱图,并利用形态学开运算进行特征增强;最后利用改进GoogLeNet网络模型对特征图进行训练,通过Softmax分类器完成特征归类,从而实现轴承故障诊断。将提出的故障诊断方法应用于不同工况下的轴承故障数据集,试验结果表明,所提方法在噪声干扰下具有较高的诊断精度。 展开更多
关键词 轴承故障诊断 经验模态分解 最小均方算法 离散小波变换 GoogLeNet模型
下载PDF
基于镜像修正FxLMS控制算法的船舶管路振动主动控制
3
作者 刘学广 谭鉴 +3 位作者 吴牧云 张二宝 闫明 刘济源 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期77-84,共8页
针对船舶管路减振和抗冲击的需求,本文根据镜像修正自适应滤波算法,设计出了一种管路振动主动控制策略,能够有效地控制管路在低频下的振动,并且在次级通道发生突变时,控制系统可再次快速收敛,进行稳定控制。本文先对镜像修正自适应滤波... 针对船舶管路减振和抗冲击的需求,本文根据镜像修正自适应滤波算法,设计出了一种管路振动主动控制策略,能够有效地控制管路在低频下的振动,并且在次级通道发生突变时,控制系统可再次快速收敛,进行稳定控制。本文先对镜像修正自适应滤波算法进行理论研究,分析算法的迭代及控制过程;再通过仿真分别验证算法在不同参考信号输入下的收敛性及稳定性;最后搭建实验台架,通过试验验证算法的实际控制效果。试验结果表明:该控制策略在管路振动主动控制中能够降低15.37%的振动强度,比自适应滤波算法控制策略的控制效果好8.85%。所以镜像修正自适应滤波算法能够及时有效地进行管路振动控制。 展开更多
关键词 镜像修正自适应滤波算法 在线辨识 自适应滤波算法 归一化算法 整体建模算法 镜像系统 权向量迭代 振动主动控制
下载PDF
一种基于动态门限与LMS算法相结合的多径干扰抑制算法
4
作者 郭立民 于致博 《舰船电子对抗》 2024年第2期52-56,92,共6页
在船舰行驶过程中,信号的传输在岛屿反射与海面散射影响下易产生多径效应,使船舰的无线地空数据接收系统受到影响。为提高接收机的接收性能,首先完成了多径信道的建模,搭建了三径信道模型,并在此模型下,将动态门限法与最小均方(LMS)算... 在船舰行驶过程中,信号的传输在岛屿反射与海面散射影响下易产生多径效应,使船舰的无线地空数据接收系统受到影响。为提高接收机的接收性能,首先完成了多径信道的建模,搭建了三径信道模型,并在此模型下,将动态门限法与最小均方(LMS)算法进行改进结合,并用此算法完成了信号处理的研究与仿真。仿真结果表明,所提算法优化方案可以提高在此种情况下信号接收系统的准确性。 展开更多
关键词 无线数据链 多径信道 干扰抑制 最小均方算法 动态门限
下载PDF
基于sigmoid-sinh分段函数的变步长FxLMS算法 被引量:2
5
作者 李飞 黄双 +2 位作者 郭辉 徐洋 傅伟 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第1期93-100,共8页
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa... 为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。 展开更多
关键词 噪声主动控制 变步长 滤波-x最小均方算法 蚁狮算法
下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
6
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) least mean square adaptive filter(lmsAF) Ship-radiated noise
下载PDF
A Quantized Kernel Least Mean Square Scheme with Entropy-Guided Learning for Intelligent Data Analysis 被引量:5
7
作者 Xiong Luo Jing Deng +3 位作者 Ji Liu Weiping Wang Xiaojuan Ban Jenq-Haur Wang 《China Communications》 SCIE CSCD 2017年第7期127-136,共10页
Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for inp... Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme. 展开更多
关键词 quantized kernel least mean square (QKlms consecutive square entropy data analysis
下载PDF
A modified fractional least mean square algorithm for chaotic and nonstationary time series prediction 被引量:2
8
作者 Bilal Shoaib Ijaz Mansoor Qureshi +1 位作者 Ihsanulhaq Shafqatullah 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期159-164,共6页
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adap... A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts. 展开更多
关键词 fractional least mean square kernel methods Reimann-Lioville derivative Mackey glass timeseries
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:1
9
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
Noise cancellation of a multi-reference full-wave magnetic resonance sounding signal based on a modified sigmoid variable step size least mean square algorithm 被引量:1
10
作者 TIAN Bao-feng ZHOU Yuan-yuan +2 位作者 ZHU Hui JIANG Chuan-dong YI Xiao-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期900-911,共12页
Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte... Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified. 展开更多
关键词 magnetic resonance SOUNDING SIGNAL MULTI-REFERENCE coils adaptive noise CANCELLATION SIGMOID variable step size least mean square (SVSlms)
下载PDF
Separate Least Mean Square Based Equalizer with Joint Optimization for Multi-CAP Visible Light Communication 被引量:2
11
作者 Jianli Jin Jianping Wang +1 位作者 Huimin Lu Danyang Chen 《China Communications》 SCIE CSCD 2022年第1期264-273,共10页
Visible light communication(VLC) is expected to be a potential candidate of the key technologies in the sixth generation(6G) wireless communication system to support Internet of Things(IoT) applications. In this work,... Visible light communication(VLC) is expected to be a potential candidate of the key technologies in the sixth generation(6G) wireless communication system to support Internet of Things(IoT) applications. In this work, a separate least mean square(S-LMS) equalizer is proposed to compensate lowpass frequency response in VLC system. Joint optimization is employed to realize the proposed S-LMS equalizer with pre-part and post-part by introducing Lagrangian. For verification, the performance of VLC system based on multi-band carrier-less amplitude and phase(m-CAP) modulation with S-LMS equalizer is investigated and compared with that without equalizer,with LMS equalizer and with recursive least squares(RLS)-Volterra equalizer. Results indicate the proposed equalizer shows significant improved bit error ratio(BER) performance under the same conditions. Compared to the RLS-Volterra equalizer, SLMS equalizer achieves better performance under low data rate or high signal noise ratio(SNR) conditions with obviously lower computational complexity. 展开更多
关键词 visible light communication Internet of Things EQUALIZATION least mean square
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
12
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model mean squared Prediction Error Final Prediction Error Generalized Cross Validation least squares Ridge Regression
下载PDF
基于改进变步长LMS算法的储能飞轮主动磁轴承-转子系统振动控制
13
作者 徐显昭 王亚军 +2 位作者 张昊随 滕伟 柳亦兵 《轴承》 北大核心 2024年第7期99-105,共7页
针对储能飞轮主动磁轴承-转子系统的振动控制,在变步长最小均方差(LMS)算法的基础上采用一种改进的步长因子并对其可变参数和算法效果进行对比分析,改进算法在提高迭代收敛速度的同时还能保持一定的稳态误差。对基于有限铁木辛柯梁单元... 针对储能飞轮主动磁轴承-转子系统的振动控制,在变步长最小均方差(LMS)算法的基础上采用一种改进的步长因子并对其可变参数和算法效果进行对比分析,改进算法在提高迭代收敛速度的同时还能保持一定的稳态误差。对基于有限铁木辛柯梁单元法建立的轴承-转子系统动力学模型的仿真结果表明,在转子的振动位移反馈信号进入控制器前,利用基于改进步长因子LMS算法的自适应滤波器可以有效识别并滤除与转子同频的信号分量,从而实现储能飞轮主动磁轴承-转子系统的不平衡振动控制。 展开更多
关键词 滑动轴承 磁力轴承 飞轮 转子 振动抑制 不平衡 最小均方算法
下载PDF
基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究
14
作者 杨纪楠 焦素娟 龙新华 《振动与冲击》 EI CSCD 北大核心 2024年第19期59-67,共9页
为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控... 为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。 展开更多
关键词 主动撑杆隔振平台 混合控制 滤波最小均方差(Fxlms) 混合灵敏度
下载PDF
A novel dynamic step size LMS optimization scheme for interference reducing in FBMC-QAM
15
作者 DONG Qiyang MA Tianming +1 位作者 JIANG Xiaoxiao MA Honglei 《High Technology Letters》 EI CAS 2024年第3期290-296,共7页
Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha... Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance. 展开更多
关键词 filter bank multicarrier quadrature amplitude modulation(FBMC-QAM) adap-tive equalization least mean square(lms) dynamic step size
下载PDF
基于LMS自适应滤波的雷达随队干扰抵消
16
作者 陈希信 曹非 《现代雷达》 CSCD 北大核心 2024年第6期39-42,共4页
随队干扰是雷达对抗中常用的干扰方式,通常通过遮盖目标回波信号而使雷达失去探测能力,因此需要加以抑制。随队干扰经常是非平稳的随机信号,在此情况下,文中利用最小均方(LMS)自适应滤波器得到干扰的估计并将其从雷达接收信号中消除,从... 随队干扰是雷达对抗中常用的干扰方式,通常通过遮盖目标回波信号而使雷达失去探测能力,因此需要加以抑制。随队干扰经常是非平稳的随机信号,在此情况下,文中利用最小均方(LMS)自适应滤波器得到干扰的估计并将其从雷达接收信号中消除,从而给出了一种基于LMS自适应滤波的雷达随队干扰抵消方法。首先,建立了雷达接收信号模型,包括主阵列天线接收信号和辅助阵元接收信号;然后,给出了基于LMS自适应滤波的干扰抵消原理,它实际上将辅助阵元接收信号输入自适应滤波器得到随队干扰估计,从主阵列天线接收信号中减去此干扰估计从而实现干扰抵消,通过分析抵消器的性能发现,除了辐射干扰的目标难以探测外,编队中其他目标的信干噪比都得到了提高;最后,给出了随队干扰抵消的仿真实例,验证了上述干扰抵消方法的良好效果。 展开更多
关键词 雷达对抗 随队干扰 干扰抵消 自适应滤波 最小均方
下载PDF
高斯曲率与波域LMS算法相结合的图像去噪扩散模型
17
作者 吴静 邵文莎 +1 位作者 祝珊珊 周先春 《信息化研究》 2024年第1期45-52,62,共9页
本文在充分研究传统PM模型的基础上,针对传统模型在模糊边缘细节等信息的不足,先利用图像的几何属性将高斯曲率作为检测算子引入到扩散模型中,将它作为扩散系数来保护边缘控制扩散,从而建立基于高斯曲率的图像去噪模型。考虑到噪声和图... 本文在充分研究传统PM模型的基础上,针对传统模型在模糊边缘细节等信息的不足,先利用图像的几何属性将高斯曲率作为检测算子引入到扩散模型中,将它作为扩散系数来保护边缘控制扩散,从而建立基于高斯曲率的图像去噪模型。考虑到噪声和图像的重要特征都集中在图像的高频部分,再采用小波变换进行小波分解,提取图像的高频部分,在小波域中运用最小均方误差(LMS)算法设计自适应阈值,进一步控制上述新扩散模型的扩散强度,提升去噪效果,建立基于高斯曲率与最小均方误差法的波域PM改进模型,最后将低频部分和经过新模型处理的高频部分进行小波重构,得到最终的去噪图像。实验结果表明,本文方法不仅能够有效去除图像噪声,同时也提升了对重要信息的保护。 展开更多
关键词 图像去噪 PM扩散模型 小波变换 高斯曲率 最小均方差
下载PDF
双曲正切函数的新型变步长LMS算法
18
作者 李俊毅 邓志祥 《计算机与数字工程》 2024年第8期2272-2278,共7页
针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并... 针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。 展开更多
关键词 最小均方算法 双曲正切函数 变步长算法
下载PDF
A new method of lung sounds filtering using modulated least mean square—Adaptive noise cancellation
19
作者 Noman Qaid Al-Naggar 《Journal of Biomedical Science and Engineering》 2013年第9期869-876,共8页
Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new ... Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new method of LS filtering which separates HS and NI simultaneously. It focuses on the application of least mean squares (LMS) algorithm with adaptive noise cancelling (ANC) technique. The second step of the new method is to modulate the reference input r1(n) of LMS-ANC to acquiesce combining HS and NI signals. The obtained signal is removed from primary signal (original lung sound recording-LS). The original signal is recorded from subjects and derived HS from it and it is modified by a band pass filter. NI is simulated by generating approximately periodic white gaussian noise (WGN) signal. The LMS-ANC designed algorithm is controlled in order to determine the optimum values of the order L and the coefficient convergence μ. The output results are measured using power special density (PSD), which has shown the effectiveness of our suggested method. The result also has shown visual difference PSD (to) normal and abnormal LS recording. The results show that the method is a good technique for heart sound and noise reduction from lung sounds recordings simultaneously with saving LS characteristics. 展开更多
关键词 LUNG SOUND FILTERING of LUNG SOUND least mean squareS Algorithm Adaptive Noise Cancelling
下载PDF
ON THE SINGULARITY OF LEAST SQUARES ESTIMATOR FOR MEAN-REVERTING α-STABLE MOTIONS 被引量:2
20
作者 胡耀忠 龙红卫 《Acta Mathematica Scientia》 SCIE CSCD 2009年第3期599-608,共10页
We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss... We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different. 展开更多
关键词 asymptotic distribution of LSE consistency of LSE discrete observation least squares method Ornstein-Uhlenbeck processes mean-revertingprocesses singularity a-stable processes stable stochastic integrals
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部