This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a ...This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a low-IF GSM receiver.The IF can be adaptively selected between 100 and 130 kHz.Test result shows an improvement of phase error from 6.78°to 3.23°.Also a least mean squares(LMS) based IQ mismatch compensation algorithm is applied to improve image rejection ratio(IRR) for the desired signal along with strong adjacent channel interference.The IRR is improved from 29.1 to 44.3 dB in measurement.The design is verified in a low-IF GSM receiver fabricated in SMIC 0.13μm RF CMOS process with a working voltage of 1.2 V.展开更多
基金supported by the Important National Science and Technology Specific Projects of China(No.2009ZX01031-003-002)the National High Technology Research and Development Program of China(No.2009AA011605)the National Natural Science Foundation of China(No.61076028)
文摘This paper presents an algorithm that can adaptively select the intermediate frequency(IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal in a low-IF GSM receiver.The IF can be adaptively selected between 100 and 130 kHz.Test result shows an improvement of phase error from 6.78°to 3.23°.Also a least mean squares(LMS) based IQ mismatch compensation algorithm is applied to improve image rejection ratio(IRR) for the desired signal along with strong adjacent channel interference.The IRR is improved from 29.1 to 44.3 dB in measurement.The design is verified in a low-IF GSM receiver fabricated in SMIC 0.13μm RF CMOS process with a working voltage of 1.2 V.