设计氢燃料电池-锂电池混合动力系统,利用AVL-CRUISE软件构建整车动力系统模型,基于新欧洲行驶测试循环(new European driving cycle,NEDC)对氢燃料电池各主要部件功耗、氢燃料电池性能、锂电池性能、氢燃料电池进气流量进行仿真验证系...设计氢燃料电池-锂电池混合动力系统,利用AVL-CRUISE软件构建整车动力系统模型,基于新欧洲行驶测试循环(new European driving cycle,NEDC)对氢燃料电池各主要部件功耗、氢燃料电池性能、锂电池性能、氢燃料电池进气流量进行仿真验证系统的经济性和合理性。结果表明:NEDC全工况下,各部件中空压机的功耗最大,且与车速正相关;全工况耗氢量为0.089 kg,总行驶里程为10.926 km,耗氢量较低,经济性较好;氢燃料电池堆内工作温度为66~77℃,符合60~80℃的温度要求;锂电池在城市工况输出功率占比大于郊区工况输出功率占比;氢气过量系数为1.1~1.5,满足动力系统不同功率输出要求;实际空气流量与设定目标接近,控制效果较好。展开更多
基于20kW燃料电池电堆及燃料电池测试系统,获得燃料电池极化曲线及氢气消耗量曲线;基于锂离子动力电池充放电系统,获得锂离子动力电池输出电压曲线.将试验所得数据导入到LMS AMESim软件中,分别构建燃料电池及锂离子动力电池模块,同时,...基于20kW燃料电池电堆及燃料电池测试系统,获得燃料电池极化曲线及氢气消耗量曲线;基于锂离子动力电池充放电系统,获得锂离子动力电池输出电压曲线.将试验所得数据导入到LMS AMESim软件中,分别构建燃料电池及锂离子动力电池模块,同时,构建仿真平台其他所需模块并搭建DC/DC变换器模型,建立燃料电池-锂离子动力电池混合的动力系统仿真平台.依据不同动力源的各自特点,引入能量控制策略,对该混合动力系统进行模拟仿真.在所选定新欧洲驾驶循环(new European driving cycle,NEDC)工况下仿真结果表明,该混合动力系统可以满足车辆在所选定工况下的动力需求.DC/DC变换器可提升并稳定燃料电池输出电压跟随母线电压,并通过对电流的分配进行功率在不同动力源之间的分配;燃料电池输出功率在合理范围之内,并取消燃料电池在低功率下的工况,从而保护燃料电池,延长其使用寿命;锂离子动力电池荷电状态(state of charge,SOC)始终保持在合理范围内,未出现过充或过放情况.研究结果可为搭建混合动力试验平台及整车搭载匹配提供理论依据及参考.展开更多
文摘基于20kW燃料电池电堆及燃料电池测试系统,获得燃料电池极化曲线及氢气消耗量曲线;基于锂离子动力电池充放电系统,获得锂离子动力电池输出电压曲线.将试验所得数据导入到LMS AMESim软件中,分别构建燃料电池及锂离子动力电池模块,同时,构建仿真平台其他所需模块并搭建DC/DC变换器模型,建立燃料电池-锂离子动力电池混合的动力系统仿真平台.依据不同动力源的各自特点,引入能量控制策略,对该混合动力系统进行模拟仿真.在所选定新欧洲驾驶循环(new European driving cycle,NEDC)工况下仿真结果表明,该混合动力系统可以满足车辆在所选定工况下的动力需求.DC/DC变换器可提升并稳定燃料电池输出电压跟随母线电压,并通过对电流的分配进行功率在不同动力源之间的分配;燃料电池输出功率在合理范围之内,并取消燃料电池在低功率下的工况,从而保护燃料电池,延长其使用寿命;锂离子动力电池荷电状态(state of charge,SOC)始终保持在合理范围内,未出现过充或过放情况.研究结果可为搭建混合动力试验平台及整车搭载匹配提供理论依据及参考.