We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter ...We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.展开更多
The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combinati...The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.展开更多
We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a ...We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh–Schrodinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.展开更多
The properties of the effective mass of the ground state of the exciton, for which the electron (hole) is strongly coupled with interface-optical (IO) phonons but weakly coupled with bulk-longitudinal-optical (LO) pho...The properties of the effective mass of the ground state of the exciton, for which the electron (hole) is strongly coupled with interface-optical (IO) phonons but weakly coupled with bulk-longitudinal-optical (LO) phonons in a quantum well, are studied by means of Tokuda’s improved linear combination operator and a modified second Lee-Low-Pines transformation method. The results indicate that the contributions of the interaction between the electron (hole) and the different phonon branches to the effective ...展开更多
文摘We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.
文摘The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375090)the K.C.Wong Magna Foundation in Ningbo University,China
文摘We study the two-dimensional weak-coupling Frohlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh–Schrodinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.
基金supported by the Natural Science Foundationof Hebei Province (Grant No. A2008000463)the Ph. D Foun-dation of Hebei Normal University of Science & Technology (GrantNo. 2006D001).
文摘The properties of the effective mass of the ground state of the exciton, for which the electron (hole) is strongly coupled with interface-optical (IO) phonons but weakly coupled with bulk-longitudinal-optical (LO) phonons in a quantum well, are studied by means of Tokuda’s improved linear combination operator and a modified second Lee-Low-Pines transformation method. The results indicate that the contributions of the interaction between the electron (hole) and the different phonon branches to the effective ...