In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually ...In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually employed to quantify the safety level under Random and Interval Hybrid Uncertainty(RI-HU).At present,there is a lack of an efficient and accurate method for estimating the upper bound of the system failure probability.This paper proposed an efficient Kriging model based on numerical simulation algorithm to solve the system reliability analysis under RI-HU.This method proposes a system learning function to train the system Kriging models of the system limit state surface.The convergent Kriging models are used to replace the limit state functions of the system multi-mode for identifying the state of the random sample.The proposed system learning function can adaptively select the failure mode contributing most to the system failure probability from the system and update its Kriging model.Thus,the efficiency of the Kriging training process can be improved by avoiding updating the Kriging models contributing less to estimating the system failure probability.The presented examples illustrate the superiority of the proposed method.展开更多
In this study, a fuzzy probability-based Markov chain model is developed for forecasting regional long-term electric power demand. The model can deal with the uncertainties in electric power system and reflect the vag...In this study, a fuzzy probability-based Markov chain model is developed for forecasting regional long-term electric power demand. The model can deal with the uncertainties in electric power system and reflect the vague and ambiguous during the process of power load forecasting through allowing uncertainties expressed as fuzzy parameters and discrete intervals. The developed model is applied to predict the electric power demand of Beijing from 2011 to 2019. Different satisfaction degrees of fuzzy parameters are considered as different levels of detail of the statistic data. The results indicate that the model can reflect the high uncertainty of long term power demand, which could support the programming and management of power system. The fuzzy probability Markov chain model is helpful for regional electricity power system managers in not only predicting a long term power load under uncertainty but also providing a basis for making multi-scenarios power generation/development plans.展开更多
大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于...大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。展开更多
基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果...基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。展开更多
提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基...提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。展开更多
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
文摘In the field of the system reliability analysis with multiple failure modes,the advances mainly involve only random uncertainty.The upper bound of the system failure probability with multiple failure modes is usually employed to quantify the safety level under Random and Interval Hybrid Uncertainty(RI-HU).At present,there is a lack of an efficient and accurate method for estimating the upper bound of the system failure probability.This paper proposed an efficient Kriging model based on numerical simulation algorithm to solve the system reliability analysis under RI-HU.This method proposes a system learning function to train the system Kriging models of the system limit state surface.The convergent Kriging models are used to replace the limit state functions of the system multi-mode for identifying the state of the random sample.The proposed system learning function can adaptively select the failure mode contributing most to the system failure probability from the system and update its Kriging model.Thus,the efficiency of the Kriging training process can be improved by avoiding updating the Kriging models contributing less to estimating the system failure probability.The presented examples illustrate the superiority of the proposed method.
文摘In this study, a fuzzy probability-based Markov chain model is developed for forecasting regional long-term electric power demand. The model can deal with the uncertainties in electric power system and reflect the vague and ambiguous during the process of power load forecasting through allowing uncertainties expressed as fuzzy parameters and discrete intervals. The developed model is applied to predict the electric power demand of Beijing from 2011 to 2019. Different satisfaction degrees of fuzzy parameters are considered as different levels of detail of the statistic data. The results indicate that the model can reflect the high uncertainty of long term power demand, which could support the programming and management of power system. The fuzzy probability Markov chain model is helpful for regional electricity power system managers in not only predicting a long term power load under uncertainty but also providing a basis for making multi-scenarios power generation/development plans.
文摘大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。
文摘基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。
文摘提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。