期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于加权距离的局部离群点检测算法 被引量:4
1
作者 尹成祥 张宏军 +2 位作者 张睿 綦秀利 王彬 《科学技术与工程》 北大核心 2014年第15期79-82,92,共5页
针对不同属性对数据点之间距离贡献的不同,提出了一种用于距离度量的属性加权策略。标称属性通过属性取值的信息熵进行加权,数值属性通过属性取值的标准差进行加权,混合属性根据标称属性和数值属性综合加权,加权策略可以放大离群点与正... 针对不同属性对数据点之间距离贡献的不同,提出了一种用于距离度量的属性加权策略。标称属性通过属性取值的信息熵进行加权,数值属性通过属性取值的标准差进行加权,混合属性根据标称属性和数值属性综合加权,加权策略可以放大离群点与正常数据之间的差别。仿真实验区分不同的属性类型对所提加权策略进行了验证,实验结果证明了策略的有效性。 展开更多
关键词 属性加权 信息熵 标准差 局部离群点因子(local cutlier factor lof)算法
下载PDF
基于数据分析方法的动力电池系统滥用故障诊断 被引量:6
2
作者 柏云耀 邹时波 李顶根 《新能源进展》 2020年第1期1-5,共5页
为了提高对于电池滥用故障的检测能力和诊断效率,针对电动汽车动力电池系统以电压、电流和电功率作为主要控制参数的特点,提出了一种基于数据分析方法的动力电池系统滥用故障检测方法。该方法采用局部异常因子(LOF)算法和感知器网络,研... 为了提高对于电池滥用故障的检测能力和诊断效率,针对电动汽车动力电池系统以电压、电流和电功率作为主要控制参数的特点,提出了一种基于数据分析方法的动力电池系统滥用故障检测方法。该方法采用局部异常因子(LOF)算法和感知器网络,研究由于电池滥用对电压、电流等数据的一致性和离散分布的影响。结果表明,由于故障造成的异常数据点,其LOF值远大于正常数据,在感知器分类结果中通常输出为"0"。利用LOF算法可以有效找出数据集中的异常数据点,利用LOF算法处理后的数据对感知器进行训练,可以对数据集进行快速分类,进而判断电池是否发生了滥用故障。该方法可为动力电池系统故障检测提供参考。 展开更多
关键词 电动汽车 动力电池 滥用故障 局部异常因子(lof)算法 感知器网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部