The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improv...The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.展开更多
Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of th...Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of the classical small perturbation method (SPM), the additional part is proportional to the surface bispectrum and it is the critical part in explaining the scattering difference between upwind and downwind observations. Meanwhile, the effects of the shadowing function of the anisotropic surface, the curvature of the surface are also taken into account. The numerical results show the theoretical estimates obtained are consistent with the experimental result, and the influence of the wind speed, the trend and the incident frequency on the backscattering coefficients from the non-Gaussian oceanic surface is discussed in detail.展开更多
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.
文摘Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of the classical small perturbation method (SPM), the additional part is proportional to the surface bispectrum and it is the critical part in explaining the scattering difference between upwind and downwind observations. Meanwhile, the effects of the shadowing function of the anisotropic surface, the curvature of the surface are also taken into account. The numerical results show the theoretical estimates obtained are consistent with the experimental result, and the influence of the wind speed, the trend and the incident frequency on the backscattering coefficients from the non-Gaussian oceanic surface is discussed in detail.