期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MULTIPLIERS AND TENSOR PRODUCTS OF WEIGHTED L^p-SPACES 被引量:3
1
作者 S. Ozto Istanbul University Faculty of Sciences Department of Mathematics Vezneciler, Istanbul Turkey. E-mail: serapoztop@hotmail.com A. T. Gurkanli Ondokuz Mayis University Faculty of Arts and Sciences Department of Mathematics 55139, Kurupelit, Samsun T 《Acta Mathematica Scientia》 SCIE CSCD 2001年第1期41-49,共9页
Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a t... Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G). 展开更多
关键词 Banach module. weighted lp(G) spaces MULTIPLIER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部